WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Analyse des déterminants de la production des cultures vivrières au Bénin: cas du maà¯s et de l'igname

( Télécharger le fichier original )
par Nouta௠Rodrigue HONKPEHEDJI
Université nationale du Bénin - Ingénieur statisticien économiste 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXE 2 : Les différents tests pour le modèle à
effets fixes : cas du maïs

. xtreg lprod lsup lpoprur lprix lhautpl, fe

Fixed-effects (within) regression Group variable: comm

Number of obs =

Number of groups =

88

8

R-sq:

within

= 0.5771

 
 

Obs per group: min =

11

 

between

= 0.9206

 
 

avg =

11.0

 

overall

= 0.8790

 
 

max =

11

 
 
 
 
 

F(4,76) =

25.93

corr(u_i, Xb)

= 0.7783

 
 

Prob > F =

0.0000

 

lprod |

Coef.

Std. Err.

t

P>|t| [95% Conf.

Interval]

 

+

 
 
 
 
 
 

lsup |

.399503

.0719143

5.56

0.000 .2562732

.5427328

 

lpoprur |

.5146713

.1144338

4.50

0.000 .2867567

.7425858

 

lprix |

-.2096241

.128581

-1.63

0.107 -.4657153

.0464672

 

lhautpl |

-.1152291

.1195592

-0.96

0.338 -.353352

.1228937

 

|

_cons

.272134

1.524566

0.18

0.859 -2.764303

3.308571

 

+

 
 
 
 
 
 

sigma_u |

.77191572

 
 
 
 
 

sigma_e |

.26264837

 
 
 
 
 

rho |

.89623914

(fraction of variance due to u_i)

 

F test that all u_i=0: F(7, 76) =

33.58

Prob > F =

0.0000

. est store fixed

. xtreg lprod lsup lpoprur lprix lhautpl, Random-effects GLS regression

re

Number of obs =

88

Group variable: comm

 

Number of groups =

8

R-sq: within = 0.5770

 

Obs per group: min =

11

between = 0.9211

 

avg =

11.0

overall = 0.8795

 

max =

11

Random effects u_i ~ Gaussian

 

Wald chi2(4) =

135.74

corr(u_i, X) = 0 (assumed)

 

Prob > chi2 =

0.0000

lprod |

Coef.

Std. Err.

z

P>|z|

[95% Conf.

Interval]

+

 
 
 
 
 
 

lsup |

.4453965

.0720188

6.18

0.000

.3042423

.5865507

lpoprur |

.5582101

.1141239

4.89

0.000

.3345313

.7818889

 
 

e

Réalisé et soutenu par Samson James Aimé AGBO et Rodrigue Noutaï HONKPEHEDJI

 
 

lprix | -.2161175 .1321722 -1.64 0.102 -.4751703 .0429353

lhautpl | -.117592 .1222238 -0.96 0.336 -.3571462 .1219621

_cons | -.4443465 1.535815 -0.29 0.772 -3.454488 2.565795

+

sigma_u | .55216822

sigma_e | .26264837

rho | .81548815 (fraction of variance due to u_i)

. hausman fixed

---- Coefficients ----

| (b) (B) (b-B) sqrt(diag(V_b-V_B))

| fixed . Difference S.E.

+

lsup | .399503 .4453965 -.0458934 .

lpoprur | .5146713 .5582101 -.0435389 .0084152

lprix | -.2096241 -.2161175 .0064934 .

lhautpl | -.1152291 -.117592 .0023629 .

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 10.78

Prob>chi2 = 0.0292

(V_b-V_B is not positive definite)

predict fixed, u sktest fixed

Skewness/Kurtosis tests for Normality

joint

Variable | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

+

fixed | 0.001 0.373 10.51 0.0052

. gen fixed2 = fixed*fixed

. reg fixed2 lprod lsup lpoprur lprix lhautpl, fe option fe not allowed

r(198);

. reg fixed2 lsup lpoprur lprix lhautpl, fe option fe not allowed

r(198);

. reg fixed2 lsup lpoprur lprix lhautpl

Source | SS df MS Number of obs = 88

+ F( 4, 83) = 8.53

Model | 10.1582918 4 2.53957294 Prob > F = 0.0000

Residual | 24.7146116 83 .297766405 R-squared = 0.2913

+ Adj R-squared = 0.2571

Total | 34.8729034 87 .40083797 Root MSE = .54568

fixed2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+

lsup | -.1340434 .082597 -1.62 0.108 -.2983254 .0302387

lpoprur | .5297644 .127636 4.15 0.000 .2759016 .7836273

 
 

f

Réalisé et soutenu par Samson James Aimé AGBO et Rodrigue Noutaï HONKPEHEDJI

 
 

lprix | -.374556 .2414996 -1.55 0.125 -.854889 .105777

lhautpl | -.6337519 .1865383 -3.40 0.001 -1.004769 -.2627348

_cons | 1.906683 1.969337 0.97 0.336 -2.010248 5.823615

. xtregar lprod lsup lpoprur lprix lhautpl, fe

FE (within) regression with AR(1) disturbances Number of obs = 80

Group variable: comm Number of groups = 8

R-sq: within = 0.5400 Obs per group: min = 10

between = 0.9095 avg = 10.0

overall = 0.8667 max = 10

F(4,68) = 19.96

corr(u_i, Xb) = 0.7855 Prob > F = 0.0000

lprod | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+

lsup | .3024995 .0761919 3.97 0.000 .1504609 .454538

lpoprur | .5682697 .1119369 5.08 0.000 .3449032 .7916363

lprix | -.2498191 .126181 -1.98 0.052 -.5016093 .0019712

lhautpl | -.1678023 .1355912 -1.24 0.220 -.4383704 .1027657

_cons | .8956003 1.036103 0.86 0.390 -1.171911 2.963111

+

rho_ar | .34613866

sigma_u | .84524194

sigma_e | .26181561

rho_fov | .91245333 (fraction of variance because of u_i)

F test that all u_i=0: F(7,68) = 17.80 Prob > F = 0.0000

. xtregar lprod lsup lpoprur lprix lhautpl, fRe option fRe not allowed

r(198);

. xtregar lprod lsup lpoprur lprix lhautpl, re

RE GLS regression with AR(1) disturbances Number of obs = 88

Group variable: comm Number of groups = 8

R-sq: within = 0.5767 Obs per group: min = 11

between = 0.9215 avg = 11.0

overall = 0.8793 max = 11

Wald chi2(5) = 170.99

corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000

lprod | Coef. Std. Err. z P>|z| [95% Conf. Interval]

+

lsup | .4855914 .0768424 6.32 0.000 .334983 .6361997

lpoprur | .6240351 .1136918 5.49 0.000 .4012032 .8468669

lprix | -.2956279 .1390389 -2.13 0.033 -.5681392 -.0231167

lhautpl | -.1572632 .1376602 -1.14 0.253 -.4270722 .1125459

_cons | -.7440033 1.554131 -0.48 0.632 -3.790045 2.302038

+

rho_ar | .34613866 (estimated autocorrelation coefficient)

sigma_u | .35540846 sigma_e | .32537836 rho_fov | .5440252 (fraction of variance due to u_i)

theta | .62604963

 
 

g

Réalisé et soutenu par Samson James Aimé AGBO et Rodrigue Noutaï HONKPEHEDJI

 
 

. xtreg lprod lsup lpoprur lprix lhautpl, re

 
 

Random-effects GLS regression

Number of obs =

88

Group variable:

comm

 

Number of groups =

8

R-sq: within =

0.5770

 

Obs per group: min =

11

between =

0.9211

 

avg =

11.0

overall =

0.8795

 

max =

11

Random effects u_i ~ Gaussian

Wald chi2(4) =

135.74

corr(u_i, X) = 0 (assumed)

Prob > chi2 =

0.0000

lprod |

Coef.

Std. Err. z

P>|z| [95% Conf.

Interval]

+

lsup |

.4453965

.0720188 6.18

0.000 .3042423

.5865507

lpoprur |

.5582101

.1141239 4.89

0.000 .3345313

.7818889

lprix |

-.2161175

.1321722 -1.64

0.102 -.4751703

.0429353

lhautpl |

-.117592

.1222238 -0.96

0.336 -.3571462

.1219621

|

_cons

-.4443465

1.535815 -0.29

0.772 -3.454488

2.565795

+

sigma_u |

.55216822

 
 
 

sigma_e |

.26264837

 
 
 

rho |

.81548815

(fraction of variance due to u_i)

 

. xtregar lprod lsup lpoprur lprix lhautpl, re

 
 

RE GLS regression with AR(1)

disturbances

Number of obs =

88

Group variable:

comm

 

Number of groups =

8

R-sq: within =

0.5767

 

Obs per group: min =

11

between =

0.9215

 

avg =

11.0

overall =

0.8793

 

max =

11

 
 
 

Wald chi2(5) =

170.99

corr(u_i, Xb)

= 0 (assumed)

Prob > chi2 =

0.0000

lprod |

Coef.

Std. Err. z

P>|z| [95% Conf.

Interval]

+

lsup |

.4855914

.0768424 6.32

0.000 .334983

.6361997

lpoprur |

.6240351

.1136918 5.49

0.000 .4012032

.8468669

lprix |

-.2956279

.1390389 -2.13

0.033 -.5681392

-.0231167

lhautpl |

-.1572632

.1376602 -1.14

0.253 -.4270722

.1125459

|

_cons

-.7440033

1.554131 -0.48

0.632 -3.790045

2.302038

+

 
 
 
 

rho_ar |

.34613866

(estimated autocorrelation coefficient)

 

sigma_u |

.35540846

 
 

sigma_e |

.32537836

 
 

rho_fov |

.5440252

(fraction of variance due to u_i)

 

theta |

.62604963

 
 
 

. xtregar lprod lsup lpoprur lprix lhautpl, fe

lbi

 

FE (within) regression with AR(1)

disturbances

Number of obs =

80

Group variable: comm

 

Number of groups =

8

R-sq: within = 0.5400

 

Obs per group: min =

10

between = 0.9095

 

avg =

10.0

overall = 0.8667

 

max =

10

 
 

F(4,68) =

19.96

corr(u_i, Xb) = 0.7855

 

Prob > F =

0.0000

 
 

h

Réalisé et soutenu par Samson James Aimé AGBO et Rodrigue Noutaï HONKPEHEDJI

 
 

lprod

|

Coef.

Std. Err.

t

P>|t|

[95% Conf.

Interval]

+

 
 
 
 
 
 
 

lsup

|

.3024995

.0761919

3.97

0.000

.1504609

.454538

lpoprur

|

.5682697

.1119369

5.08

0.000

.3449032

.7916363

lprix

|

-.2498191

.126181

-1.98

0.052

-.5016093

.0019712

lhautpl

|

-.1678023

.1355912

-1.24

0.220

-.4383704

.1027657

_cons

|

.8956003

1.036103

0.86

0.390

-1.171911

2.963111

+

 
 
 
 
 
 
 

rho_ar

|

.34613866

 
 
 
 
 

sigma_u

|

.84524194

 
 
 
 
 

sigma_e

|

.26181561

 
 
 
 
 

rho_fov

|

.91245333

(fraction of variance because

of u_i)

 

F test that all u_i=0: F(7,68) = 17.80 Prob > F = 0.0000

modified Bhargava et al. Durbin-Watson = 1.3889366

Baltagi-Wu LBI = 1.6300891

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy







Changeons ce systeme injuste, Soyez votre propre syndic



"Je ne pense pas qu'un écrivain puisse avoir de profondes assises s'il n'a pas ressenti avec amertume les injustices de la société ou il vit"   Thomas Lanier dit Tennessie Williams