WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Existence et comportement asymptotique des solutions d'une équation de viscoélasticité non linéaire de type hyperbolique

( Télécharger le fichier original )
par Khaled ZENNIR
Université Badji Mokhtar Algérie - Magister en Mathématiques 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

1.3 Existence Methods

1.3.1 The Contraction Mapping Theorem

Here we prove a very useful fixed point theorem called the contraction mapping theorem. We will apply this theorem to prove the existence and uniqueness of solutions of our nonlinear problem.

Definition 1.3.1 Let f : X - X be a map of a metric space to itself. A point x 2 X is called a fixed point off if f(x) = x.

Definition 1.3.2 Let (X, dx) and (Y, dY ) be metric spaces. A map çü : X -p Y is called a contraction if there exists a positive number C < 1 such that

dy (ço(x),ço(y)) Cdx(x,y), (1.35)

for all x,y 2 X.

Theorem 1.3.1 (Contraction mapping theorem [45] )

Let (X, d) be a complete metric space. If çü : X -p X is a contraction, then çü has a unique fixed point.

1.3.2 Gronwell's lemma

Theorem 1.3.2 ( In integral form)

Let T > 0, and let çü be a function such that, çü 2 L1(0, T), çü ~ 0, almost everywhere and q be a function such that, q 2 L1(0,T), q ~ 0, almost everywhere and qço 2 L1 [0, T], Ci, C2 ~ 0. Suppose that

q(t) ~ Ci + C2 Zt ço(s)q(s)ds, for a.e t 2 ]0,T[, (1.36)

0

then,

t

0 1

f

0

q(t) Ci exp @C2 '(s)ds A , for a.e t 2 ]0,T[. (1.37)

Proof. Let

F(t) = C1 + C2 Zt ço(s)q(s)ds, for t 2 [0, T], (1.38)

0

we have,

q(t) F(t),

From (1.38) we have

F'(t) = C2ço(t)q(t)

~ C2ço(t)A(t), for a.e t 2 ]0,T[. (1.39)

d

8

<

:

dt

Consequently,

0 1 9

f t =

F (t) exp @_ C2'(s)ds A 0, (1.40)

0

;

then,

t

0 1

f

F (t) ~ Ci exp @C2 (s)ds A , for a.e t 2 ]0, T[. (1.41)

0

Since q F, then our result holds.

In particle, if C1 = 0, we have q = 0 for almost everywhere t 2 ]0, T[.

1.3.3 The mean value theorem

Theorem 1.3.3 Let G : [a, b] -p be a continues function and çü : [a, b] -p is an integral positive function, then there exists a number x in (a, b) such that

Zb G(t)cp(t)dt = G(x) Zb ço(t)dt. (1.42)

a a

m Zb ço(t)dt ~ Zb G(t)ço(t)dt M Zb ço(t)dt. (1.46)

a a a

In particular for ço(t) = 1, there exists x 2 (a, b) such that

Zb G(t)dt = G(x) (b - a). (1.43)

a

Proof. Let

m = inf {G(x), x 2 [a, b]} (1.44)

and

M = sup {G(x), x 2 [a, b]} (1.45)

of course m and M exist since [a, b] is compact. Then, it follows that

By monotonicity of the integral. dividing through by f a b ço(t)dt, we have that

f a b G(t)cp(t)dt

m < f b < M. (1.47)

a co(t)dt

Since G(t) is continues, the intermediate value theorem implies that there exists x 2 [a, b] such that

: (1.48)

a co(t)dt

f a b C(t)'(t)dt G(x) = f b

Which completes the proof.

 

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy





Changeons ce systeme injuste, Soyez votre propre syndic





"Il faudrait pour le bonheur des états que les philosophes fussent roi ou que les rois fussent philosophes"   Platon