WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Stochastic differential equations involving the two- parameter fractional brownian motion

( Télécharger le fichier original )
par Iqbal HAMADA
Université Dr Moulay Tahar de SaàŻda Algérie - Master en probabiltés et applications 2011
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

1.2 Two-parameter Fractional Brownian Motion

1.2.1 The Main Definition

For technical simplicity we consider two-parameter fBm (fBm field) {BHt , t ? 1182+}, where t = (t1, t2). We suppose that s = t if s = (s1, s2), t = (t1, t2) and si = ti, i = 1, 2.

1.2.2 Fractional Integrals and Fractional Derivatives of 14 Two-parameter Functions

Definition 1.2.1. The two-parameter process {BHt ,t ? R2+} is called a (normalized) two-parameter fBm with Hurst index H = (H1, H2) ? (0,1)2, if it satisfies the assumptions:

(a) BH is a Gaussian field, Bt = 0 for t ? ?R2+;

(b) EBti = 0, EBt HBH = 1 11

4

(ti 2Hi si 2Hi ti si

i=1,2

Evidently, such a process has the modification with continuous trajectories, and we will always consider such a modification. Moreover, consider "two-parameter" increments:ÄsBHt := BHt - BHs1t2 - BHt1s2 + BHs for s = t. Then they are stationary. Note, that for any fixed ti > 0 the process BH

(ti,.)

will be the fBm with Hurst index Hj, i = 1,2, j = 3 - i, evidently, nonnormalized.

1.2.2 Fractional Integrals and Fractional Derivatives of Two-parameter Functions

For á = (á1, á2) denote (á) =

(á1)1(á2)

Definition 1.2.2. [12] Let f ? T := [a, b] := 11 [ai, bi], a = (a1, a2),

i=1,2

b = (b1, b2). Forward and backward Reimann-Liouville fractional integrals of orders 0 < ái < 1 are defined as

(Iaá_r12 f)(x) := (á) f (u) ?(x, u, 1 - á) du,

and

(Ir2 f)(x) := (á) f (u)

du

lx,b] ?(x, u, 1 - á) ,

correspondingly, where [a, x] = 11 [ai, xi], [x, b] = 11 [xi,bi],du = du1du2,

i=1,2 i=1,2

?(u, x, á) =| u1 - x1 |á1| u2 - x2 |á2, u, x ? [a, b].

Definition 1.2.3. Forward and backward fractional Liouville derivatives of orders 0 < ái < 1 are defined as

2

(Dr2 f)(x) := (1 f (u) a) \ du

?x1?x2 ?(x, u, á)

and

?2 f (u) , du, x ? [a, b]

(Dr :á2 x)

:= (1 - á) ?x1?x2 i[x,b] ?(x, u, á)

1.2.2 Fractional Integrals and Fractional Derivatives of Two-parameter Functions 15

Definition 1.2.4. Forward fractional Marchaud derivatives of orders 0 < ái < 1 are defined as

~ f Äu xdu

( 15r2 f)(x) :=(1 - á) f (x) +

?(x, u, á) á1á2 ./[a,x] ?(x, u,( 1 )+ á)

+ E

i=1,2,j=3-i

ái

áj

ix% f (x) - f (ui, x j) dui) a% (xi - ui)1+á%

xj - aj

and the backward derivatives can be defined in a similar way

Let 1 = p = 8, the classes Iá1á2

+ (Lp(T )) := ~f|f = Iá1á2

a+ ?, ? ? Lp(T )~,

I

á1á2 - (Lp(T )) := ~f|f = Iá1á2 b- ?, ?? Lp(T)1 Further we denote Dá1á2

a+ := Ia-+ á1á2). Of course, we can introduce the notion of fractional integrals and fractional derivatives on R2 +. For exemple, the Riemann-Liouville left and Right sided fractional integrals and derivatives on R2+ are defined by the formulas

(If+ l1á2 f)(x) := (á) L8 f(t) ,x] cp(x , u, á)dt

f (t)

(I21á2 f)(x) := (á) 48) ?(x,u, á) dt,

2

(cá

(á12)f)(x) = (DTá2 f)(x) := (1 - á) ? x1?x2

?I f(t)

(,,x] (p(x ,t, á) dt

and

2

f ft)

(I-(á1á2)f)(x) (Dá1á2f)(x)

:= (1 - á) ?x1?x2 i[x,8) ?(x( t, á)dt,

0 < ái < 1. Evidently, all these operators can be expanded into the product

of the form Iá1á2

+ = Iá+ 1 ? Iá2 +, and so on. In what follows we shall consider

only the case Hi ? (1/2, 1). Define the operator

YM#177; 1 H2 f :=

i=1,2

C(3)

H%Iá1á2 #177; f.

1.2.3 Hölder Properties of Two-parameter fBm

We fix á = (á1, á2), ái ? (0,1] and let T = [a1, b1] × [a2, b2]. Let f the Riemann-Liouville fractional integral of order á i.e

1

x1 Ix2

2 (x1 - t1) 1-- f (át1,t21 (x2 )- t2)--á2

f)(x1, x2) = (al)F(a2) dt1dt2, (x1, x2) ? T

vx1)v.1ritc:E2) a1 . a

p

The space Ëá,p = (Iaá+)(Lp(T)) is called the Liouville space (or Besov space) and it becomes separable Banach space with respect to the norm WEc+fllá,p = IIfII

Proposition 1.2.3.1. [6] For every á, â

a+Iâ a+= Iá+â

a+ ,

If f ? C2b (T) and f = 0 on ?1T = ([a1,b1] × {b1}) ? ({a1} × [a2,b2])then the function

1 f x1 14+ f (x1, x2) = r2 ?2f(t1,t2) dt1dt2

(1 - á1)(1 - á2) L1 Ja2 ?t1?t2 (x1 - t1)á1 (x2 - t2)á2

(1.4)

is the unique function from L8(T) such that

Iáa+Dáa+f = f.

For a rectangle D = [s1, t1] × [s2, t2] ? T we define the increment on D of the function f : T ? R by

f(D) = f(t1,t2) - f(t1, s2) - f(s1,t2) + f(s1, s2).

We denote by C[ai,bi],ái the space of all ái-Hölder functions on [ai, bi] and

kfk[ai,bi],ái = sup

u6=v,ai=u,v=bi

|f(u) - f(v)|

(u - v)ái .

Also, we denote by CT,á1,á2 the space of all (á1, á2)-Hölder functions on T, i.e., f ? CT,á1,á2 if f is continuous,

If(a1, .)k[a2,b2],á2 < 8, f(., a2)k[a1,b1],á1 < 8

and

|f([u1, v1] × [u2, v2])|

< 8.

|u1 - v1|á1|u2 - v2|á2

kfkT,á1,á2 = sup

ui6=vi

Proposition 1.2.3.2. [4] Let 0 < â1 < á1,0 < â2 < á2 and p = 1. Then we have the continuous inclusions Ëá,p ? Ëâ,p,

Ëá,p ? Cá1-p-1,á2-p-1, Câ1,â2 ? Ëã,p if áip > 1, âi > ãi > 0

1.2.4 Fractional Generalized Two-parameter Lebesgue-Stieltjes Integrals 17

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy





Changeons ce systeme injuste, Soyez votre propre syndic





"La première panacée d'une nation mal gouvernée est l'inflation monétaire, la seconde, c'est la guerre. Tous deux apportent une prospérité temporaire, tous deux apportent une ruine permanente. Mais tous deux sont le refuge des opportunistes politiques et économiques"   Hemingway