WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Reconstruction des images hv-convexes par la recherche taboue

( Télécharger le fichier original )
par Abdesselem DAKHLI
ISG-GABES - Master informatique 2010
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

[1] A. Kuba and G.T. Hermann. Discrete tomography : a historical overview. In Discrete Tomography: Foundations, Algorithms and Applications, pages 3-33. Birkhauser, 1999.

[2] B. Wang and F. Zhang. On the precise number of (0, 1)-matrices in u(r, s). Discrete Mathematics, 187 : 211-220, 1998.

[3] C. Picouleau. Reconstruction of domino tiling from its two orthogonal projections. Theoretical computer science, 255(1) : 437-447, 2001.

[4] E. Barcucci and A. Del Lungo. Reconstructing convex polyominoes from their horizontal and vertical projections. Theoretical computer science, 155(1) :321-347, 1996.

[5] G.J.Woeginger. The reconstruction of polyominoes from their orthogonal projections. Information Processing Letters, 77(5-6) : 225-229, 2001.

[6] H.J. Ryser. Combinatorial properties of matrices of zeros and ones. Ca-nad. J. Math, 9 :371-377, 1957.

[7] M. Chrobak and C. Durr. Reconstructing hv-convex polyominoes from orthogonal Projections. Information Processing Letters, 69 : 283-289, 1999.

[8] R.J. Gardner,P. Gritzmann, and D. Prangenberg. On the computionnal complexity of reconstructing lattice sets from their x-rays. Discrete Mathematics, 202 : 45-71, 1999

[9] R. M. Haber. Term rank of 0,1 matrices. Rend. Sem. Mat. Univ. padova, 30 :24-51,1960.

[10] E. Barcucci, A. Del Lungo, M. Nivat and R. Pinzani, Reconstructing convex polyominoes from their horizontal and vertical projections, Theoret. Comput. Sci., 155 (1996), 321-347.

[11] G.J.Woeginger.The reconstruction of polyominoes from their orthogonal projections. Information Processing Letters, 77(5-6) : 225-229, 2001.

Abdessalem DAKHLI 50

Bibliographie

[12] Geir dahl, Truls Flatberg, Optimization and reconstruction of hv-convex (0, 1)-matrices. (2003), 58-69.

[13] F.Jarray, M.Costa, C. Picouleau. Approximating hv-convex binary matrices and images from discrete projections.1-10.

[14] R.J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity of determining polyatomic structures by x-rays. Theoretical computer science, 233 :91-106, 2000

[15] H.J. Ryser. Combinatorial properties of matrices of zeros and ones. Ca-nad. J. Math, 9 :371-377, 1957.

[16] K.J. Bateleur. An Evolutionary Algorithm for Discrtee tomography : Mathemaical Institue, Leinden University, Niels Bohrweg, I, 2333 CA Leinden and CWI.

[17] A. Del Lungo and M. Nivat. Reconstruction of connected sets from two projections. Chapter 7 of [15], page 163-188, 1999.

[18] D. Gale. A theorem on flows in networks. Pacific journal of Mathematics, 7 : 1073-1082, 1957.

[19] G. Dahl and T. Flatberg. Optimization and reconstruction of hv-convex (0, 1)-matrices. In A. Del Lungo. V. Di Gesù and A. Kuba. Editors, Electronic Notes in Discrete Mathematics. Volume 12. Elsevier, 2003.

[20] H.J. Ryser. Combinatorial Mathematics. The Carus Mathematical Monographs no. 14, chapter 6. AMS, 1963.

[21] R.J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Mathematics, 202 : 45-71, 1999.

[22] S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, and M. Nivat. Reconstruction of 4-and 8-connected convex discrete sets from row and column projections. Linear Algebra and its Applications, 339 : 37-57, 2001.

[23] S. Matej, A. Vardi, G.T Herman, and E. Vardi. Binary tomography using gibbs priors. Chapter 8 of [15], pages 191-212, 1999

[24] Th. Back, D.B. Fogel, and T. Michalewiez, editors. Evolutionary Computation 1. Institute of Physics Publishing, Bristol and Philadelphia, 2000.

[25] W. Hochstattler, M. Loebl, and C. Moll. Generating convex polyominoes at random. Discrete Mathematics, 153 :165-176, 1996.

[26] Z. Michalewiez. Genetic Algorithms + Data Structures= Evolution Programs; 3rd Revision edition. Springer Verlag, 1996.

[27] A. kuba and G.T. Herman. Discrete tomography: A historical overview. Chapter 1 of [15], pages 3-34, 1999.

Abdessalem DAKHLI 51

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy







Changeons ce systeme injuste, Soyez votre propre syndic



"La première panacée d'une nation mal gouvernée est l'inflation monétaire, la seconde, c'est la guerre. Tous deux apportent une prospérité temporaire, tous deux apportent une ruine permanente. Mais tous deux sont le refuge des opportunistes politiques et économiques"   Hemingway