WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Contribution à  l'analyse et la synthèse des systèmes d'ordre fractionnaire par la représentation d'état

( Télécharger le fichier original )
par Rachid MANSOURI
Université Mouloud Mammeri de Tizi Ouzou, Algérie - Doctorat 2008
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

[1] Ait Messaoud L. (2007)Contibution à la commande dessystèmespar des régulateurs d'ordre non entierApplication àla commande deamachine asynchrone. Mémoire de Magister, Univeristé Mouloud Mammeri de Tizi-Ouzou.

[2] Aoun M. (2005). Systèmes linéaires nonentiers et identi~cation par bases orthogonales non entières. Phd Thesis, Université de Bordeaux 1

[3] Al-Alaoui M.A. (1993). Novel digital integrator anddi~erentiator.Electronics letters, vol. 29, n 4, pp. 376-378.

[4] Baker J.E. (1987). Adaptative selection methods forgenetics algorithms.J.J. Creffenstette (Ed.) lst International conference on genetic algorithmsnd their applications. pp. 14-21, New Jersey.

[5] Barret P. (1982) Régimes transitoires des machinestournantes électriiues. Editions Eyrolles, Paris.

[6] Bettayeb M., Silverman L.Met Safonov M.G (1980). Optimal approximation of continuous-time systems. 2Oth IEEE Conference on Decision and Control CDC''8, 21-24 December, Albuquerque New Mexicopp10-12.

[7] Bettayeb M. et Djennoune S. (2006) A Note on the Controllability and theObservability of Fractional Dynamical Systems. In : Proceedings of the 2th IFAC Workshop on Fractional Di~erentiation and itsApplications, Porto, Portugal.

[8] Blaschke F. (1972), The principle offield orientation as appliedohe nee transsektor closed-loop control systemforrotating ~eldmachines. Siemens Review n. 34, pp. 217- 220.

[9] Caputo M. (1967). Linear models ofdissipation whoseq is almost frequency independent. Ceopthysical journal of tthe royal astronomical society. vol. 2, n 13, pp. 529-539.

[10] Carlson G.E. et Halijak CA. (1964) Approximationof fractional capacitor(1/s)1/n by a regular Newton ProcessIRE Transactions on circuit ttheory. vol. 2, pp. 210-213.

[11] Charef A. et Sun H.H. (1990)Time domain analysis of fractal system.nEngeneering in Medicine and BiologysocietyyProceedings ofthe12th Annual international Conference oftthe IEEE, n 18, pp. 597-621.

[12] Charef A., Sun H.H., Tsao Y.Y. et Onaral BFractal system as representedby singularity function. IEEE Transactions on Automatic Control . vol. 37, n 9, pp. 1465-1470

[13] Charef A. (2006)Modeling and analogrealizationof the fundamentalinearractional order differential equation. Nonlinear Dynamics, vol. 46, pp.195-210.

[14] Chen C.T. (1984). Linear system ttheory and design. Holt, Rinehart and Wiston New-York.

[15] Chen Y.Q. et Moore K.L. (2002) DiscretizationSchemes forFractional-Order Differentiators and Integrators. IEEE Transactions on Circuits and Systems-IFundamental Ttheory and Applications , 49(3), pp. 363-367

[16] Clerc M. (2005). L'Optimisation par essaims particulaires, Versions paramétriques et adaptatives, Editions Hermès, Paris.

[17] Cole K. S. et Cole R.H. (1941) Dispersion and absorption n dielectrics, alternation current characterization. Journal of Cthemical Pthysics, vol. 9, pp. 1417-1418

[18] Davidson D. et Cole R. (1950) Dielectric relaxation n glycerine.Journal of Cthemistry and Pthysics. vol. 18, pp. 1417-1418.

[19] De Larminat P. (1996) Automatique : Commande des systèmes inéaires. Editions Hermès, Paris.

[20] Djamah T. et Mansouri R. (2006) Développement d'une nouvelleméthode de calcul d'un modèle d'état à partir dun modèle transfertd'ordrenon entiermonovariable. rapport interne.

[21] Dzielinski A. et Sierociuk D. (2006) Stability of Discrete FractionalOrder StateSpace Systems. Proceedings of the 2nd IFAC Workshop onFractionalDi~erentiation and its Applications Porto, Portugal.

[22] Glover K. (1984)All optimal Hankel-norm approximations ofinearmultivariable systems and their H8-error bounds. International Journal of Control , vol. 39, pp. 1115-1193.

[23] Goldberg D.E. (1989) Cenetic algorithmsin search, optimiiation, and machineearr ning. Addison-Wesley, New York.

[24] Gorenflo R. (1997)Fractional calculus Some numericalmethods. In : A. Carpinteri and F. Mainardi (eds.). Fractals and Fractional Calculus n ContinuumMechanics. Springer Verlag, Vienna, New York

[25] Guglielmi M., (2002). Approximation optimale duntransfertnon entierpar un réseau de cellules. In : Proceedings de la Conférence InternationaleFrancophone ddAutomaa tique, Nantes French, 8-10 julypp534-539

[26] Grunwald A.K. (1867)Ueber begrenzte derivationen und deren anwendung. Z. Angew. Math. Phys.. n 12, pp. 441-480.

[27] Gustavsen B. et Semlyen A(1999) Rational approximation of freeuency domain responses by vector fittingIEEE trans. Power Delivery. vol. 14, pp. 1052-1061

[28] Gustavsen B. (2004)A robust approach for system denti~cationn the freeuency domain. IEEE trans. Power Delivery. vol. 19, n 3, pp. 1167-1173

[29] Haupt R.L. and Haupt S.E. (1998) Practical Cenetic Algorithm. John Wiley & Sons, Yew York.

[30] Héliea T., Matignon D. (2006) Representations with polesand cuts forheimedomain simulation of fractional systems andirrationaltransfer functions.Signal Processing vol. 86, pp. 2516-2528

[31] Hotzel R. (1998)Contribution à la théorie structurelle et àa commande des systtmes linéaires fractionnaires, PhD. Thesis, Université de Paris SudOrsay

[32] Kavranoglu D. et Bettayerb M. (1993) Characterization of theolution to the optimal H model reduction prorblem. S ystems and Control Letters, vol. 20, pp. 99-107.

[33] Kennedy J. and Erberhart R. (1995) Particle SwarmOptimization.IEEE International Conference Neural Networks, vol. IV, pp. 1942-1948 PerthAustralia.

[34] Kilrbas A.A., Srivastava H.Met Trujillo JJ (2006) Theor y and applications offractional di~eretial equations. Elsevier, North-Holland.

[35] Levy E. (1959). Complex curve fitting.IRE transactions on automaticcontrol , 4, pp. 37-43.

[36] Liouville J. (1832). Mémoire sur quelques questions de géométrie et demécnique, et sur un nouveau genre de calcul pour résoudre ces équations.l'Ecole Pol ytechnique, vol. 13, pp. 71-162.

[37] Lorenzo C.F. et Hartley TT (1998) Initialization, conceptualization, and application in the generalized fractional calculus.NASA/TM 1998-208415, Springfield (VA) . NTIS.

[38] Lorenzo C. et Hartley T(2000) Initialized FractionalCalculus.NASA TP-2000- 209943, Springfield (VA) NTIS.

[39] Loverro A. (2004) Fractional calculus History,deefinition and applicationorhe engineer.

[40] Lurbich C. (1986). Discretized fractional calculus.SIAM Journal of Mathematical Anal ysis, vol. 17, n 3, pp. 704-719.

[41] Liu Y. et Anderson B.D.O. (1989) Singular perturrbation approximation of rbalanced systems. International Journal of Control , vol. 50, pp. 1379-1405

[42] MacDonald J.R. (1987) Impedance spectroscop y. John Wiley, New York.

[43] Tenreiro Machado J.A. (2001) Discrete-time fractional-order controllers.Fractional Calculus Applied Anal ysis vol. 1, pp. 47-66.

[45] De Madrid A.P., Mafioso C. et HernÉindez R. (2006) NewDirectDiscretization of the Fractional-Order Differentiator/Integratorby the Chebyshev-PadéApproximation. In : Proceedings of the 2nd IFA C Workshop onFractionalDi~erentiationndts Applications, july 19-21 Porto .

[46] Magin R.L. (2006)Fractional Calculusin Bioengineering , Begell House Punlishers, Inc., Connecticut.

[47] Mansouri R., Bettayeb MDjamah Tet DjennouneS.(2007).System dentiication in frequency domain by fractional Vector Fitting algorithm.In Proc. of the second International Conference on Modeling and Simulation ICMSAOO00. March 24-27, Abu Dhabi , UAE.

[48] Mansouri R., Bettayeb Met Djennoune S. (2008). State SpaceFractionalModel Approximation Using Integral Representation.Soumis au 3ème IFAC Workshop on Fractional Di~erentiation and itsApplications, 00-00Novembre 2008, Ankara.

[49] Mansouri R., Bettayeb Met Djennoune S. (2009). State Space fractionalModel Approximation by taking account of the initial conditions.Submited to the third International Conference on Modeling and Simulation ICMSAOO00. January 20-22, Sharjah, UAE.

[50] Marquardt D.W. (1963) An algorithm for east squares estimation of non-linear parameters. Journal of the Society for Industrial and AppliedMathematics, vol. 11, n 2, pp. 431-441.

[51] Matignon D. et Andréa-Novel B (1996) Some results on controllability and observability of finite-dimensional fractional di~erential systems.In IMACS, IEEE-SMC Proceedings Conference. pp. 952-956, Lille, France

[52] Matignon D. (1998)Stability properties for generalized fractional diierentialystems. In Proc. of the colloquium FDS''98Fractional di~erentialystemsModels, Methods and Applications, n 5, pp. 145-158, Paris.

[53] Matignon D. (1998)Représentations en variablesd'état demodèles de guides ddondes avec dérivation fractionnaire . PhD Thesis, Université de Paris-SudOrsay

[54] Matsuda K. et Fujii H. (1993) Optimised Wave Absorbing ControlAnalytical and Experimental Results. Journal guidance control and dynamics. vol.16, n6, pp.1146- 1153.

[55] Mbodje B. et Montseny G. (1995) Boundary fractionalderivative control of the wave equation. IEEE Transaction on Automatique Control . vol. 40 n 2, pp. 378-382

[56] Miller K.S. et Ross B. (1974) An introduction to thefractional calculus and fractional differential equations. A Wiley Interscience Publication

[57] Mittag-Leffler G. (1904) Sur lareprrsentationanalytique d'une branche uniforme d'une fonction monogène. Acta Mathematica. n 29, pp. 10-181

[58] Moore B. C. (1981)Principal component analysisn inear systems Controllability, Observability and model reductionIEEE Transactions on Automatic Control , vol. A C-26, pp. 17-31.

[59] Oldham K.B. et Spanier J. (1974) The fractional calculus. Academic Press, New York and London.

[60] Onaral B. et Schwan H.P. (1982) Linear and nonlinearproperties of platinum elec trode polarization, Part IFrequency dependence at very ow frequencies.Med. Biol. Eng. Comput., vol. 20, pp. 299-306.

[61] Orjuela R., Malti R. Moze Met OustaloupA.(2006). Prise en compte des conditions initiales lors de la simulation de fonctions detransfertnon entières.In : Proceedings de la Conférence Internationale Francophone ddAutomatique CIFA 20066 0,33 mai et ler juin 2006 Bordeaux.

[62] Ortigueira M.D. et Serralheiro A.J (2006) A new east-squares approacho diierintegration ModellingSpecial Section : Fractional CalculusApplicationsn Signals and Systems. vol. 10 pp.2582-2591.

[63] Ortigueira M., Valerio DSo Da CostaJ (2007). Identifying a transfer function from a frequency response. In : Proceedings of the 6th InternationalConference onMull tibody Systems, Nonlinear Dynamics andControl. MSND C-14-3, ASME IDET C'07 September 4-7, Las VegasNevada, USA.

[64] Oustaloup A. (1983) Systèmes asservislinéaires d'ordrefractionnaire. Editions Masson, Paris.

[65] Oustaloup A. (1995)La Dérivation non Entière Théorie, synthèse et application, Editions Hermes, Paris.

[66] Ostalczyk P. (2003)Fundamental properties of the fractional-order discrete-time integrator. Signal Processing n 83, 2367-2376.

[67] Podlubny I. (1999) Fractional di~erential equations . Academic Press, San Diego

[68] Podlubny I. (2002). Geometric and physical interpretation of fractionalntegration and fractional differentiation. Journal offractional calculs and applied analysis. vol. 5, n 4, pp. 367-386.

[69] Podlubny I., PetrÉ I., Vinagre BMOLeary Pet DorrÉk L 2002).Analogue realizations of fractional-order controllers.Non linear Dynamics, vol. 29, pp. 281- 296.

[70] Poinot T. Trigeassou JC(2003) A method for modellingand simulation of fractional systems. Signal Processing, vol. 83, pp. 2319-2333.

[71] Raynaud H.F. et Zergaïnoh A. (2000) State-space representation for fractional order controllers, Automatica. n 36, pp. 1017-1021.

[72] Reynolds, C. W. (1987)Flocks, herds and schools adistributedbehavioralmodel. Computer Craphics, vol. 21, n 4, pp. 25-34.

[73] Sabatier J., Cois O. et Oustaloup A. (2002) Commande de systtmesnon entiers par placement de pôles. Conférence Internationale Francophone dd'Automatique. Nantes, France.

[74] Sun H.H. et Onaral B. (1983) A unified approach to represent metal electrodepolarization. IEEE Transactions on Biomedical Engineering , vo. 30, n7, pp. 399-406.

[75] Samko S.G., Kilbas A.A. et Marichev OI. (1993) Fractional Integrals andDerivatives. Gordon and Breach Science Publishers

[76] Vinagre B.M., Podlubny I., Hernandez A. et FeliuV (2000) Some approximations of fractional order operators used in control theoryand applications, Fractional Calculus & applied Analysis, vol. 3 n 3, pp. 231-248.

[77] Vinagre B.M., Monje C.A., et Calder'on A.J. (2002). Fractional order systems and fractional order actions. Tutorial workshop # 2 : Fractional calculus applicationsn automatic control and robotics, 41st IEEE CDC, Las vegas, USA.

[78] Vinagre B. M., Monje C. A., Calderon A. JChen YQ. et FeliuV (2004). The frac tional integrator as a reference function.In : Proceedings of the lst IFAC Workshop on Fractional Di~erentiation and itsApplications, Bordeaux France.

[79] Xue D.Y. et Chen Y.Q. (2005) Sub-Optimum Rational Approximation to Fractional Order Linear SystemsProceedings of the ASME 2005 International Design Engii neering Technical Conferences Computers and Informationn Engineering Confee rence. long Beach, California, USA.

[80] Xue D., Zhao C. et Chen Y.Q. (2006) A ModiifiedApproximationMethod ofFractional Order System. Proceedings ofthe IEEEInternational Conferenceon Mechatronics and Automation. Luoyang, china.

Publications dans des revues internationales

[1] R. Mansouri, M. Bettayeb, S. Djennoune. Multivariable fractional ordersystem approximation using derivative representation. International Journal of Applied Mathematics (IJAM), ISSN 1311-1728

[2] R. Mansouri, S. Djennoune, M. Bettayeb. Fractional IP pole placement controller design : Application to permanent magnet synccronousmotorontrolontrolles. International Journal of Modeling Identification and Control (IJMIC), ISSN online) 1746-6188 - (print) 1746-6172

[3] R. Mansouri, M. Bettayeb, S. Djennoune. Non integer order I-P pole placement controller design : Applicationto Inductionmotor control. International Review of Electrical Engineering (IREE)ISSN 1827-6660.

[4] R. Mansouri, S. Djennoune, M. Bettayeb, A. CharefApproximation of a noninteger order implicit model . Transaction on Systems, Signals and Devices (Analysis & Automatic Control), ISSN 1861-5252.

Communications dans des congrès internationaux avec actes et comité de lecture

[1] R. Mansouri, M. Bettayeb, S. Djennoune. Optimal Reduced-orderApproximation of Fractional Dynamical Systems. Conférence International des Systèmes Automatiques CIS A 2008, 30 juin au 02 juillet 2008Annaba, Algérie.

[2] L. Ait Messaoud, R. Mansouri, S. Haddad. Second Generation CRONE Speed Control for an Induction Motor2nd International Conference onElectrical Electronics Engineering ICEEE'08, 21-23 Avril 2008, Laghouat, Algérie.

[3] L. Ait Messaoud, R. Mansouri, S. Haddad. Programmation nonlinéaire avec Optimisation par Essaims Particulaires Calcul des ParamètresOptimaux d'un Correcteur Fractionnaire. 6ème Rencontre d' Analyse Mathématique et ses Applications, R AM A VI, 26-28 Avril 2008, Tizi-OuzouAlgérie.

[4] T. Djamah, R. Mansouri, S. Djennoune, M. Bettayeb. Identification des modèles d'état d'ordre fractionnaire. 7ème conférence Internationale de Modélisation et Simulation, MOSIM'08, 31 Mars au 02 Avril 2008Paris, France.

[5] R. Mansouri, M. Bettayeb, T. Djamah, S. DjennouneMultivariable fractional order system approximation using the integral representation. 6th IEEE Conference on Decision and Control, 12-14 December 2007, New Orleans, USA.

[6] R. Mansouri, S. Djennoune, M. Bettayeb. Identification dessystèmes fractionnaires à l'aide de l'algorithme et loptimisation par essaim de particules.Colloque International Méthodes et Outils d' Aide a Décision. MOAD'4, 18-19-20 Novembre 2007 Béjaïa, Algérie.

[7] L. Ait Messaoud, R. Mansouri, S. Haddad. Identification des systèmes fractionnaires par des modèles optimaux réduits dordreentier.The Eighth International Conference on Sciences and Techniques of AutomaticControl. STA'07, 05-07 Novembre 2007 sousse, Tunisie.

[8] T. Djamah, R. Mansouri, M. Bettayeb, S. Djennoune, S. GuermahIdentification des systèmes fractionnaires par des modèles optimaux réduits d'ordre entier.5ème

Conférence sur le Génie Electrique . CGE'07, 16-17 Avril 2007AlgerAlgérie

[9] R. Mansouri, S. Djennoune, M. Bettayeb, A. CharefApproximation of a noninteger order implicit model. Fourth IEEE International Multi-Conference onSystems, Signals Devices. SSD'07, 19-22 Mars 2007Hammamat, Tunisie.

[10] R. Mansouri, M. Bettayeb, T. Djamah, S. Djennoune. system identiification in frequency domain by fractional vector ifitting algorithm.Second International Conference on Modelling, Simulation and Applied Optimiiation. ICMSAO'07, 24-27 Mars 2007Abu Dhabi, Emirates Arabes Unies

[11] T. Djamah, R. Mansouri, S. Djennoune, S. Guermah, M. BettayebIdentiification of fractional systems with optimal reduced integer ordermodel.Second International Conference on Modeling,Simulation and AppliedOptimiiation. ICMSAO'07, 24-27 Mars 2007, Abu Dhabi, Emirates Arabes Unies

[12] R. Mansouri, S. Djennoune, M. Bettayeb. Non Integer order I-P controllers design using Genetic Algorithms . International Conference on Control, Modelling and Diagnostics, ICCMD'06, 22-24 May 2006, Annaba, Algeria

[13] R. Mansouri, S. Djennoune, S. Haddad, M. Bettayeb, Permanent magnet synchronous motor control using fractional I-P controllers.Second International Conference on Electrical Systems. ICES'06, 8-10 May 2006, Oum El Bouaghi, Algeria

[14] S. Guermah, R. Mansouri, T. Djamah, S. Djennoune, M. BettayebNon Integer Derivative: Theory and Application to System Modelling andAnalysis.The Sixth International Conference on Sciences and Techniques of Automatic Control. STA'05, 19-21 décembre 2005, sousse, Tunisie

[15] R. Mansouri, S. Djennoune, S. Haddad. Commande des systèmes dordre non- entiers : Application à la commande dune machine à courant continu.The Sixth International Conference on Sciences and Techniques of Automatic Control. STA'05, 19-21 décembre 2005, sousse, Tunisie

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy







Changeons ce systeme injuste, Soyez votre propre syndic



"Tu supportes des injustices; Consoles-toi, le vrai malheur est d'en faire"   Démocrite