WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

à‰tude comparative sur les rendements des 4 variétés d'arachide dans le sol de Mbanza-Ngungu.

( Télécharger le fichier original )
par Costa NDEKANI MAWALA
Univesité Kongo - Graduat 2014
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXE

39

40

summary(aov(to$111.aut14---to$traitement+to$colonne+to$ligne)j

Df Sum Sq Mean Sq F value Pr(7F) to$traitemernt 3 2.616 .8719 0.340 0.797

to$colonne 3 0.650 0.2166 0.085 0.966

to$ligne 3 6.018 2.0060 0.783 0.545

Residuals 6 15.367 2.5612

7 Tu]ceyHSD(eov(to$Yaaut14--to$traitement+to$colonue+to$ligrne) )

Tnkey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = to$haut14 -- to$traitement + to$colonne + to$ligne}

$'to$traiteraent'

di ff lwr upr p ad]

ICGV-SM 86021-ICGM 281 -0.31125 -4.22866 3.60616 0.9919805

TCGV-SM 96722-ICGM 281 -0.93000 -4.84741 2.98741 0.8425268

JT.24-ICGM 281 0.11000 -3.80741 4.02741 0.9996327

ICGV-SM 96722-ICGV-SM 85021 -0.61875 -4.53516 3.29855 0.9440941

JL24-ICGV-SM 86021 0.42125 -3.49616 4.33866 0.9807909

J1.24-ICGV-SM 96722 1.04000 -2.87741 4.95741 0.7964442

S `to$colorine `

di ff lwr upr p ad]
-C1 0.09125 -3.82616 4.00855 0.9987900 C3-C1 -0.24250 -4.15991 3.67491 0.9961443 C4-C1 0.32000 -3.59741 4.23741 0.9913056 C3- -0.33375 -4.25116 3.58355 0.9901740 C4- 0.22875 -3.68866 4.14616 0.9967546 C4-C3 0.56250 -3.35491 4.47991 0.9568408

$ to$ligne`

6374434

di ff lwr upr p adj
1.2-1.1 0.753125 -3.478162 4.984412 0.9232532 1.3-1.1 0.390000 -3.555884 4.435884 0.9859568 1-4-1-1 1.700525 -2.530662 5.931912 0.5468995 1.3-1.2 -0.353125 -4.079507 3.353257 0.9853985 1.4-1-2 0.947500 -2.969910 4.864910 0.8354758 1.4-1.3 1.310625 -2.405757 5.027007 0.

summary(aov(to$191aut28--to$traitement+to$colonne+to$1igne)}

Df Sum Sq Mean Sq F value Pr(7Y) to$traitement 3 1.572 0.524 0.237 0.867

to$colonne 3 9.106 3.035 1.374 0.338

ta$ligne 3 7.406 2.469 1.117 0.413

Residuals 6 13.258 2.210

7 Tu]ceyHS0(aov(to$liaut28-to$traitement+to$colonne+to$ligne)j

Tuke y multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = to$haut28 -- to$traitement + to$colonne + to$ligne) S'to$traitement'

di ff lwr upr p adj

ICGV-SM 86021-ICGM 281 0.2875 -3.351109 3.926109 0.9921091

ICGV-SM 96722-1CGM 281 -0.4800 -4.118509 3.158609 0.9558429

J1.24-ICGM 281 -0.4150 -4.053509 3.223609 0.9772932

ICGV-SM 96722-ICGV-SM 86021 -0.7675 -4.406109 2.871109 0.8817034

J1.24-ICGV-SM 86021 -0.7025 -4.341109 2.935109 0.9053114

JL24-ICGV-SM 96722 0.0650 -3.573509 3.703609 0.9999051

S'to$colonne'

cliff lwr upr p ad]
-C1 -0.4350 -4.073509 3.203509 0.9740653 C3-C1 -0.6925 -4.331109 2.946109 0.9087212 C4-C1 1.2700 -2.358509 4.908509 0.6442196 C3- -0.2575 -3.896109 3.381109 0.9942840 C4- 1.7050 -1.933609 5.343609 0.4338747 C4-C3 1.9525 -1.676109 5.601109 0.3318308

$'to$ligne'

cliff 1wr up= p adj
L2-L1 0.1195833 -3.810563 4.049730 0.9995331 L3-L1 0.9953333 -2.752605 4.753272 0.7975033 1.4-1.1 1.6670833 -2.253063 5.597230 0.5076144 L3-L2 0.8757500 -2.575137 4.327637 0.8152554 1.4-1.2 1.5475000 -2.091109 5.186109 0.5056721 1.4-1.3 0.6717500 -2.780137 4.123637 0. 9433799

41

7 summary(aov(to$19..aut42--to$traitement+to$colonne+to$ligue)}

 

Df Sum Sq

Mean Sq F value

Pr(7E)

 
 
 
 
 
 

to$traitement

3 23.740

7.913 10.113

0.00922

w w

 
 
 
 
 

to$colonne

3 3.133

1.044 1.335

0.34818

 
 
 
 
 
 

to$ligne

3 18.737

6.246 7.982

0.01622

 
 
 
 
 
 

Residuals

6 4.695

0.782

 
 
 
 
 
 
 

Signif. codes:

0

0.001 'k,' 0.01

`w: 0.05

L.P.

 

0.1

`

'

1

7 TukeyHSD(aav(ta$naut42--to$traitement+ta$colonne+ta$ligne)}

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(fat-ncila = to$baut42 -- to$traitement + to$colonne + to$ligne}

$ ' t o $ t rai t ement '

cliff lwr upr p adj

ICGV-SM 86021-ICGM 281

 

3.3050

1.13970527

5.470295

0.0074346

ICGV-SM 96722-ICGM 281

 

2.4250

0.25970527

4.590295

0.0312651

JL.24-ICGM 281

 

2.2275

0.06220527

4.392795

0.0446031

ICGV-SM 96722-ICGV-SM

86021

-0.8800

-3.04529473

1.285295

0.5388629

JL24-ICGV-SM 06021

 

-1.0775

-3.24279473

1.087795

0.3895739

JL24-ICGV-SM 96722

 

-0.1975

-2.36279473

1.967795

0.9880262

$ to$calann.e'

di ff

lwr

upr

p adj

-C1

0.7950

-1.3702947

2.960295

0.6104511

C3-C1

0.8500

-1.3152947

3.015295

0.5637882

C4-C1

1.2125

-0.9527947

3.377795

0.3059285

C3-

0.0550

-2.1102947

2.220295

0.9997279

C4-

0.4175

-1.7477947

2.582795

0.9056290

C4-C3

0.3625

-1.8027947

2.527795

0.9346887

$ to$ligne'

cliff

lwr

upr

p adj

1.2-1.1

-1.33375

-3.€725356

2.005036

0.2936252

1.3-1.1

0.60600

-1.6303068

2.842307

0.7869761

1.4-1-1

1.63875

-0.700035€

3.977536

0.1719055

L3-L2

1.93975

-0.1144289

3.993929

0. 0625766

{

7 summary(aov(to$11..aut56--to$traitement+to$colonne+to$ligrie)}

 

Df Sum Sq

Mean Sq F

value

Pr (7F).

 
 
 
 

ta$traitement

3 23.795

7.932

5.947

0.0314

 
 
 
 

ta$colonne

3 1.136

0.379

0.284

0.8355

 
 
 
 

to$ligne

3 9.580

3.193

2.394

0.1670

 
 
 
 

Residuals

6 8.002

1.334

 
 
 
 
 
 

Signif. codes:

0 swww:

0.001 'ww'

0.01

`w' 0.05

0.1

'


·

1

7 TukeyISD(aov(to$11aut56---to$traitement+to$colonrie+to$ligne) Tukey nuiltiple comparisons of means 95% family-wise confidence level

Fit: aov ( forriui1a = to$baut56 -- to$traitement

di ff

$ ` t o $ t rai t ement `

+ ta$colonne

+ to$ligne)

ICGV-SM 86021-ICGM 281

3.2750

mw=-

wr3.2750 0.4481427

upr

6.1018573

p adj

0.0269967

ICGV-SM 96722-ICGM 281

1.0250

-1.8018573

3.8518573

0.6189278

TL24-ICGM 281

2.1025

-0.7243573

4.9293573

0.1435777

ICGV-SM 96722-ICGV-SM 86021

-2.2500

-5.0768573

0.5768573

0.1154299

TL24-ICGV-SM 86021

-1.1725

-3.9993573

1.6543573

0.5240506

.31.24-ICGV-SM 96722

1.0775

-1.7493573

3.9043573

0.5845832

$`to$colonne`

di ff

lwr

upr

p adj

-C1

0.4525

-2.374357

3.279357

0.9420534

C3-C1

-0.2000

-3.026857

2.626857

0.9942885

C4-C1

-0.2000

-3.026857

2.626857

0.9942885

C3-

-0.6525

-3.479357

2.174357

0.8526935

C4-

-0.6525

-3.479357

2.174357

0.8526935

C4-C3

0.0000

-2.826857

2.826857

1.0000000

$`to$ligne`

 

di ff

lwr

upr

p adj

L2-L1

-1.3554167

-4.4087715

1.697938

0.4740169

L3-L1

-0.9726667

-3.8922323

1.946899

0.6739070

L4-L1

0.5420833

-2.5112715

3.595438

0.9237623

L3-L2

0.3827500

-2.2990423

3.064542

0.952

42

summary(aov(to$diam14--to$traitemeut+to$colonne+to$lzgrae) Df Sum Sq Mean Sq F value Pr(7E)

to$traztement 3 3.637 1.2222 34.912 0.000341 WWW

to$colonne 3 0.137 0.0456 1.313 0.354231

to$1zgne 3 0.233 0.0777 2.238 0.184413

Residuals 6 0.208 0.0347

Siquif. codes: ',r x,r. 0.001 0.01 -f.. 0.05 0.1 1

7 TulceyHSD(sov(to$diaml4--to$traitemeot+to$colonue+to$lique)j rake y multiple conpart s ans of means 95% family-wise confidence 1 eve 1

Fit: aov (fo rmnl a = t o $ di aml 4 -- t o $ t raz t emeut + to$colonne + t o $ 1 z gne )

$'to$traitement'

di ff 1wr upr p adj

ICGV-SM 86021-ICGM 281 0.0000 -0.45612052 0.4561205 1.0000000

ICGV-SM 96722-ICGM 281 -0.8750 -1.33112052 -0.4188795 0.0023016

1.24-ICGM 281 0.4375 -0.01862052 0.8936205 0.0589150

ICGV-SM 96722-ICGV-SM 86021 -0.8750 -1.33112052 -0.4188795 0.0023016

.71-24-ICGV-SM 86025 0.4375 -0.01862052 0.8936205 0.0589150

.71-1.24-ICGV-SM 96722 1.3125 0.85637948 1.7686205 0.0002477

S`to$colonne'

cliff 1wr upr p adj
-C1 -0.1875 -0.6436205 0.2686205 0.5305761 C3-C1 -0.0625 -0.5186205 0.3936205 0.9620537 C4-C1 0.0625 -0.3936205 0.5186205 0.9620537 C3- 0.1250 -0.3311205 0.5811205 0.7816426 C4- 0.2500 -0.2061205 0.7061205 0.3206306 C4-C3 0.1250 -0.3311205 0.5811205 0.7816426

S`to$lzgne`

di ff 1wr upr p adj

1.2-1.1 -0.23958333 -0.7322498 0.2530831 0.4064571 1-3-1.1 0.06666667 -0.4044126 0.5377459 0.9585268 1-4-1-1 0.01041667 -0.4822498 0.5030831 0.9998428 1.3-1.2 0.30625000 -0.1264639 0.7389639 0.1669139

7 summary (ao T(to$dlr~m78-to$traite]Rent+to$color me+to$] igme ) Df Sum Sq Mean Sq F value Pr(7F)

t otraitement 3 4.377 1.4589 2.554 0.143

to$colonne 3 0.590 0.1966 0.358 0.786

t o$ligne 3 0.687 0.2289 0.416 0.748

Residuals 6 3.299 0.5498

TukeyISD(aov(ta$dlam28-to$traitement+to$calonne+to$llgne)j

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formonila = to$diam28 ^- to$traiterit + tocolonue + to$ligne}

$-to$traitement`

duff lwr upr p adj

ICGV-SM 86021-ICGM 281 0.2625 -1.5524342 2.0774342 0.9559766

ICGV-SM 96722-ICGM 281 -0.7025 -2.5174342 1.1124342 0.5737798

SL24-ICGM 281 0.7450 -1.0699342 2.5599342 0.5316254

ICGM-SM 96722-ICGV-SM 86021 -0.9650 -2.7799342 0.8499342 0.3418899

J7.24-ICGV-SM 86021 0.4825 -1.3324342 2.2974342 0.7958142

JI.24-ICGV-SM 96722 1.4475 -0.3674342 3.2624342 0.1146552

$'-to$colonne'

cliff lwr upr p adj
-C1 -0.1850 -1.999934 1.629934 0.9835134 C3-C1 0.0125 -1.802434 1.827434 0.9999946 C4-C1 0.3475 -1.467434 2.162434 0.9073055 C3- 0.1975 -1.617434 2.012434 0.9801291 C4- 0.5325 -1.282434 2.347434 0.7472488 C4-C3 0.3350 -1.479934 2.149934 0.9156441

$'to$lign

duff lwr upr p adj
L2-L1 0.1766667 -1.78368E 2.137020 0.9884361 L3-1.1 0.2006667 -1.673789 2.075123 0.9810341 L4-L1 0.5841667 -1.376186 2.544520 0.7389248 L3-L2 0.0240000 -1.697798 1.745798 0.9999549 L4-L2 0.4075000 -1.407434 2.222434 0.8621654 L4-L3 0.3835000 -1.338298 2.105298 0.8648165

43

7 summarr(aov(to$diam42-to$traitement+to$colonne+to$ligrie)j

t o $ t rai t eurent t o$ col ohne t o$ 1 i gne Residuals

Of

 

Sum Sq

Mean Sq F

value

Pr (7F)

3

5.254

1.7512

3.068

0.113

3

0.449

0.1497

0.262

0.850

3

0_483

0.1510

O_282

0.837

6

3.425

0.5709

 
 

7 TulceyHSD(aov(to$diam42-to$traitement+to$colonne+to$ligme))

Tulcey rain t iple comparisons of means 95% faxai 1 y-wise confidence 1 eve 1

Fit: aov(forxmula to$diara42 -- to$traitement + to$colonne + to$ligne}

$ - t o $ t rai t ement

I CGV- SM 8 6 0 2 1 -ICGM 281 I CGV- SM 9 6 7 2 2 -ICGM 281 al.24-ICGM 281

I CGV- SM 0 6 7 2 2- ICGV- SM 01T.24-ICGV-SM 86021 01T.24-ICGV-SM 96722

 

cliff

1wr

upr

p adj

 

0.2150

-1.6344422

2.0644422

0.9760343

 

-0.8600

-2.7094422

0.9894422

0.4395623

 

0.7275

-1.1219422

2.576-9422

0.5623271

8.6021

-1.0750

-2.9244422

0.7744422

0.2809791

 

0.5125

-1.3369422

2.3619422

0.7762867

 

1.5875

-0.2619422

3.4359422

0.0890269

lwr

- 1.814442

- 1.924442

- 1.48.5942

- 1.959442

- 1.521942

- 1.411942

.-C1
.C3-C1
.C4-C1

C3 -

C4-

C4 -C3

$`to$colonne'

cliff

0.0350

- 0.0750 0.3625

- 0.1100 0.3275 0.4375

upr

p adj

1.884442

0.9998872

1.774442

0.9989001

2.211942

0.9015007

1.739442

0.9965734

2.176942

0.9242741

2.286942

0.8438455

$ `to$ligrne `

L2-1.1 L3 -L1 L4-1-1 L3-L2 L4-L2 L4-L3

cliff 0.4254167 0.2005667 0.4479167

- O.2247500 0.0225000 0.2472500

lwr

- 1_572209

- 1.709429

- 1.549709

- 1.979285

- 1.825942

- 1.507285

upr g adj

2.423043 0_8788701 2.110762 0.9820266 2.445543 0.8525126 1.529785 0.9685273 1.871942 0.9999700 2.001785 0.9590069

} Summary(ao(to$dlam56-to$traitement+to$colonne+to$11gue) Df Sum Sq Mean Sq F value Pr (7F)

t o$traitement 3 3.213 1.0710 1.334 0.348

t o$colonne 3 0.375 0.1252 0.156 0.922

t o$ligne 3 1.662 0.5540 0.690 0.591

Residuals 6 4.817 0.8028

7 TukeyHSD(aov(to $diam56-to$traitement+to$colonne+to$ligne) }

Tukey multiple comparisons of means 95% family-wi se confidence level

Fit: aov(formula = to$diam56 -- to$traitement + to$colonne + to$ligne} $'to$traitemient'

dlff

ICGV-SM 86021-ICGM 281 0.1625

ICGV-SM 96722-ICGM 281 -0.4500

Jî.24-ICGM 281 0.8000

ICGV-SM 96722-ICGV-SM 86021 -0.6125

J1.24-ICGV-SM 86021 0.6375

J1..24-ICGV-SM 96722 1.2500

lwr

- 2.0307414

- 2.6432414

- 1.3932414

- 2.8057414

- 1.5557414

- 0.9432414

upr p adj

2.355741

0.9934614

1.743241

0.8895773

2.993241

0.6149053

1.580741

0.7724921

2.830741

0.7521779

3.443241

0.2940266

$`to$colonne'

cliff lwr upr p adj
-C1 0.1125 -2.080741 2.305741 0.9977887 C3-C1 0.2375 -1.955741 2.430741 0.9804045 C4-C1 0.4125 -1.780741 2.605741 0.9114576 C3- 0.1250 -2.068241 2.318241 0.9969792 C4- 0.3000 -1.893241 2.493241 0.9622380 C4-C3 0.1750 -2.018241 2.368241 0.9918807

$`ta$ligne`

diff lwr upr p adj
L2-L1 0.21875 -2.150222 2.587722 0.9875933 L3-L1 0.23000 -2.035170 2.495170 0.9836955 L4-L1 0.88125 -1.487722 3.250222 0.6014814 L3-L2 0.01125 -2.069442 2.091942 0.9999974 L4-L2 0.66250 -1.530741 2.855741 0.7314969 L4-L3 0.65125 -1.429442 2.731942 0.7113970

44

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy





Changeons ce systeme injuste, Soyez votre propre syndic





"Et il n'est rien de plus beau que l'instant qui précède le voyage, l'instant ou l'horizon de demain vient nous rendre visite et nous dire ses promesses"   Milan Kundera