WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Analyse globale d'une classe de modèles épidémiologiques avec différentes infectivités

( Télécharger le fichier original )
par Dany Pascal Moualeu Ngangue
Université de yaoundé I  - DEA 2007
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

[1] P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host parasite systems. Gobal analysis, discrete and continuous dynamical systems-series B, vol 8, N°1, july 2007, pp. 260-278.

[2] R. M. Anderson, Complex dynamic in the interaction between parasite population and the host's immune system, Int J parasito, 28 (1998), pp. 551-566.

[3] R. M. Anderson, R.M. May and S. Gupta, Non-linear phenomena in host-parasite interaction, Parazitology, 99 suppl.(1989), pp. 59-79.

[4] M. M. Ballyk, C. C. McCluskey, G. S. K. Wolkovicz, Global analysis of competition for perfectly substitutable resources with linear response, J. Math. Biol, 51(2005), pp. 458-490.

[5] N. P. Bathia and G. P. Szegö, Stability theory of dynamical systems, Springer-Verlag, (1970).

[6] E. Berretta and V. Capasso, on the general structure of epidemic systems. Global asymptotic stability, J. Dyn. Diff. Equations, 16(2004), pp. 139-166.

[7] S. Bowong, Contribution à la stabilisation et stabilité des systèmes non linéaires : Applications à des systèmes mécaniques et épidémiologiques, Thèse de doctorat, Université de Metz, France, (2003).

[8] V. Capasso, Mathematical structure of epidemic systems, Lect. Notes in Biomath., vol 97, Springer Verlag,(1993).

[9] H. H. Diebner, M. Eichner, L. Molineaux, W.E. Collins, G.M. Jeffrery, and K. Dietz, Modelling the transition of asexual blood stages of plasmodium falciparum gametocytes, J. Theoret. Biol., 202(2002), pp. 113-127.

[10] O. Diekmann, J. A. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), pp. 365-382.

[11] O. Diekmann, J. A. Heesterbeek, J. A. J. Metz, Mathematical epidemiology of infections diseases, Model Building and analysis and interpretation, Wiley & Sons Ltd., Chichester, (2000).

[12] B. Goh, non vulnerability of ecosystems in unpredictable environments, theor. population biology, 10(1976), pp. 83-95.

Mémoire de DEA: Dany Pascal MOUALEU c~, UYI 2008

[13] M. B. Gravenor and A. L. Lloyd, Reply to : Models for the in-host dynamics of malaria revisited : Errors in some basic models lead to large over-estimate of growth rates, parasitology, 117(1998), pp. 409-410.

[14] M. B. Gravenor, A. L. Lloyd, P. G. Kemsner, M. A. Missinou, M. English, K. Marsh and D. Kwiatkowski, A model for estimating total parasite load in falciparum malaria patients, J. Theoret. Biol., 217(2002), pp. 137-148.

[15] A. B. Gumel, C. C. McCluskey, J. Watmough, modelling the potential impact of SARS vaccine, Math. Biosci. Eng., 3(3)(2006) pp. 485-512.

[16] A. B. Gumel, C. C. McCluskey, P. van den Driessche, Mathematical study of a staged-progression HIV model with imperfect vaccine, Bull. of Mathematical Biol., DOI 10.1007/s11538-006-9095-7, (2006).

[17] H. Guo and M. Y. Li, Global dynamics of staged progression model for infectious disease, Math. Biosci. Eng., 3(3)(2006), pp. 513-525.

[18] J. Hale, Ordinary differential equation, John Wiley, New york, (1969).

[19] J. Hoftbauer, K. Sigmund, Evolutionary games and population dynamics, Cambridge University Press, Cambridge, (1998).

[20] J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, Math. Biosci. Eng., 3 (2006).

[21] J. M. Hyman and J. Li, Treshold conditions for the spread of HIV infection in age structured populations of homosexual men, J. Theoret. Biol., 166(1994), pp. 9-31

[22] J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, J. Math. Biol., 50(2005), pp. 626-644.

[23] J. M. Hyman, J. Li and E.A. Stanley, The initialization and sensivity of multi group models for transmission of HIV, J. theoret. Biol., 208(2001), pp. 227-249.

[24] J. M. Hyman, and J. Li, An intuitive formulation for reproduction number for the spread of diseases on heterogeneous populations, Math. Biosci., 167(2000).

[25] J. M. Hyman, and J. Li, The reproductive number for an HIV models with differential infectivity and staged progression,J. Lin. alg. appl., 398(2005), pp. 101-116.

[26] A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, Global analysis of new malaria intra host models zithacompetitiveexclusionprinciple, SIAM. J. Appl. Math., vol 67, N°1, Dec. 2006, pp. 260-278.

[27] J. M. Hyman, J. Li and E.A. Stanley, The differencial infectivity and stage progression models for the transmission, Math. Biosci., 155(2)(1999), pp. 77-109.

[28] J. C. Kamgang, Contribution à la stabilisation des modèles mécaniques, contribution à l'étude de la stabilité des modèles épidémiologiques, Thèse de Doctorat à l'Université de Metz,(2003).

Mémoire de DEA:

Dany Pascal MOUALEU c~, UYI 2008

[29] J. P. LaSalle, The stability of dynamical systems, SIAM, Philadelphia, 1976.

[30] J. P. LaSalle, Stability theory for ordinary differential equations, J. Differ. equations, 41 (1968), pp. 57-65.

[31] J. P. LaSalle, Stability of dynamical systems, SIAM, Princetown univ. Press, Prince-town, NJ, (1949).

[32] J. Li, Y. Zhou, Z. Ma, and J. M. Hyman, epidemiological models for mutating pathogens, SIAM J. Appl. Math., 65(2004), pp. 1-23.

[33] M. Y. Li, J.S. Mudolwey and P. van den Driessche, A geometric approach to global stability problems, SIAM. J. Appl. Appl., 27(1996), pp. 1070-1083.

[34] M. Y. Li, J. S. Mudolwey and P. van den Driessche, Global stability of SEIRS model in epidemiology, Can. Appl. Math. Q., 7(4)(1999), pp. 409-425.

[35] X. Lin and J. W. H. So, Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations, J. Aust. Math. Soc., ser. B, 34 (1993), pp. 282-295.

[36] D. G. Luenberger, Introduction to dynamics theory models and application, John Wiley and New York, (1979).

[37] A. Lyapunov, problème général de stabilité du mouvement,Ann. of Math. stud.,vol 17 Philadelphia, (1976).

[38] D. P. Mason, F. E. McKenzie, and W. H. Bossert, the blood-staged dynamics of mixed plasmodium malariae-plasmodium falciparum infections, J. Theoret. Biol., 198(1999), pp. 549-566.

[39] C. C. McCluskey, Global stability for a class of mass action systems allowing for in tuberculosis, J. Math., Anal. Appl. (2007).

[40] C. C. McCluskey and P. Van den Driessche, Global analysis of two tuberculosis models, Journal of Dynamics and Différential Equations, Vol N°1 , January 2004.

[41] C. C. McCluskey, P. van den Driessche, Global analysis of two tuberculosis models, J. Diff. Equations, 16(1)(2004), pp. 139-166.

[42] C. C. McCluskey and P. Van den Driessche, Global analysis of two tuberculosis models, Journal of Dynamics and Différential Equations, Vol N°1 January 2004.

[43] F. E. McKenzie and W. H. Bossert, The dynamics of plasmodium falciparum blood-stage infection, J. Theoret. Biol., 188(1997), pp. 127-140.

[44] F. E. McKenzie and W.H. Bossert, The optimal production of gametocytes by plasmodium falciparum, J. Theoret. Biol., 193(1998), pp. 419-428.

[45] D. P. Moualeu, Analyse globale d'une classe de modèles épidémiologiques, Mémoire de DIPES II, ENS-UYI, (2008).

Mémoire de DEA:

Dany Pascal MOUALEU c~, UYI 2008

[46] D. P. Moualeu, Estimation des états et paramè tres dans un modèle épidémiologique, Mémoire de maîtrise, Université de Douala, Cameroun, (2007).

[47] C. P. Simon and J.A. Jacquez, Reproduction numbers and the stability of equilibria of S. I. models for heterogeneous populations, SIAM J. Appl. Math., 52(2)(1992), pp. 541-576.

[48] J. J. Tewa, Analyse globale des modèles épidémiologiques multicompartimentaux : Application à des modèles intra-hôtes de paludisme et de VIH, Thèse de doctorat, Université de Metz, (2007)

[49] P. van den Driessche, J. Watmough, Reproduction numbers and sub-treshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29-48.

[50] http :// www.sida-info-service.org/informer/proteger/transmission.php4.

[51] Ministère de la Santé Publique, Programme National de Lutte contre la Tuberculose, Guide technique pour le personnel de santé, (2001).

Mémoire de DEA:

Dany Pascal MOUALEU c~, UYI 2008

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy







Changeons ce systeme injuste, Soyez votre propre syndic



"Il existe une chose plus puissante que toutes les armées du monde, c'est une idée dont l'heure est venue"   Victor Hugo