WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Analyse globale d'une classe de modèles épidémiologiques avec différentes infectivités

( Télécharger le fichier original )
par Dany Pascal Moualeu Ngangue
Université de yaoundé I  - DEA 2007
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

[1] P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host parasite systems. Gobal analysis, discrete and continuous dynamical systems-series B, vol 8, N°1, july 2007, pp. 260-278.

[2] R. M. Anderson, Complex dynamic in the interaction between parasite population and the host's immune system, Int J parasito, 28 (1998), pp. 551-566.

[3] R. M. Anderson, R.M. May and S. Gupta, Non-linear phenomena in host-parasite interaction, Parazitology, 99 suppl.(1989), pp. 59-79.

[4] M. M. Ballyk, C. C. McCluskey, G. S. K. Wolkovicz, Global analysis of competition for perfectly substitutable resources with linear response, J. Math. Biol, 51(2005), pp. 458-490.

[5] N. P. Bathia and G. P. Szegö, Stability theory of dynamical systems, Springer-Verlag, (1970).

[6] E. Berretta and V. Capasso, on the general structure of epidemic systems. Global asymptotic stability, J. Dyn. Diff. Equations, 16(2004), pp. 139-166.

[7] S. Bowong, Contribution à la stabilisation et stabilité des systèmes non linéaires : Applications à des systèmes mécaniques et épidémiologiques, Thèse de doctorat, Université de Metz, France, (2003).

[8] V. Capasso, Mathematical structure of epidemic systems, Lect. Notes in Biomath., vol 97, Springer Verlag,(1993).

[9] H. H. Diebner, M. Eichner, L. Molineaux, W.E. Collins, G.M. Jeffrery, and K. Dietz, Modelling the transition of asexual blood stages of plasmodium falciparum gametocytes, J. Theoret. Biol., 202(2002), pp. 113-127.

[10] O. Diekmann, J. A. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), pp. 365-382.

[11] O. Diekmann, J. A. Heesterbeek, J. A. J. Metz, Mathematical epidemiology of infections diseases, Model Building and analysis and interpretation, Wiley & Sons Ltd., Chichester, (2000).

[12] B. Goh, non vulnerability of ecosystems in unpredictable environments, theor. population biology, 10(1976), pp. 83-95.

Mémoire de DEA: Dany Pascal MOUALEU c~, UYI 2008

[13] M. B. Gravenor and A. L. Lloyd, Reply to : Models for the in-host dynamics of malaria revisited : Errors in some basic models lead to large over-estimate of growth rates, parasitology, 117(1998), pp. 409-410.

[14] M. B. Gravenor, A. L. Lloyd, P. G. Kemsner, M. A. Missinou, M. English, K. Marsh and D. Kwiatkowski, A model for estimating total parasite load in falciparum malaria patients, J. Theoret. Biol., 217(2002), pp. 137-148.

[15] A. B. Gumel, C. C. McCluskey, J. Watmough, modelling the potential impact of SARS vaccine, Math. Biosci. Eng., 3(3)(2006) pp. 485-512.

[16] A. B. Gumel, C. C. McCluskey, P. van den Driessche, Mathematical study of a staged-progression HIV model with imperfect vaccine, Bull. of Mathematical Biol., DOI 10.1007/s11538-006-9095-7, (2006).

[17] H. Guo and M. Y. Li, Global dynamics of staged progression model for infectious disease, Math. Biosci. Eng., 3(3)(2006), pp. 513-525.

[18] J. Hale, Ordinary differential equation, John Wiley, New york, (1969).

[19] J. Hoftbauer, K. Sigmund, Evolutionary games and population dynamics, Cambridge University Press, Cambridge, (1998).

[20] J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, Math. Biosci. Eng., 3 (2006).

[21] J. M. Hyman and J. Li, Treshold conditions for the spread of HIV infection in age structured populations of homosexual men, J. Theoret. Biol., 166(1994), pp. 9-31

[22] J. M. Hyman and J. Li, Differential susceptibility and infectivity epidemic models, J. Math. Biol., 50(2005), pp. 626-644.

[23] J. M. Hyman, J. Li and E.A. Stanley, The initialization and sensivity of multi group models for transmission of HIV, J. theoret. Biol., 208(2001), pp. 227-249.

[24] J. M. Hyman, and J. Li, An intuitive formulation for reproduction number for the spread of diseases on heterogeneous populations, Math. Biosci., 167(2000).

[25] J. M. Hyman, and J. Li, The reproductive number for an HIV models with differential infectivity and staged progression,J. Lin. alg. appl., 398(2005), pp. 101-116.

[26] A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, Global analysis of new malaria intra host models zithacompetitiveexclusionprinciple, SIAM. J. Appl. Math., vol 67, N°1, Dec. 2006, pp. 260-278.

[27] J. M. Hyman, J. Li and E.A. Stanley, The differencial infectivity and stage progression models for the transmission, Math. Biosci., 155(2)(1999), pp. 77-109.

[28] J. C. Kamgang, Contribution à la stabilisation des modèles mécaniques, contribution à l'étude de la stabilité des modèles épidémiologiques, Thèse de Doctorat à l'Université de Metz,(2003).

Mémoire de DEA:

Dany Pascal MOUALEU c~, UYI 2008

[29] J. P. LaSalle, The stability of dynamical systems, SIAM, Philadelphia, 1976.

[30] J. P. LaSalle, Stability theory for ordinary differential equations, J. Differ. equations, 41 (1968), pp. 57-65.

[31] J. P. LaSalle, Stability of dynamical systems, SIAM, Princetown univ. Press, Prince-town, NJ, (1949).

[32] J. Li, Y. Zhou, Z. Ma, and J. M. Hyman, epidemiological models for mutating pathogens, SIAM J. Appl. Math., 65(2004), pp. 1-23.

[33] M. Y. Li, J.S. Mudolwey and P. van den Driessche, A geometric approach to global stability problems, SIAM. J. Appl. Appl., 27(1996), pp. 1070-1083.

[34] M. Y. Li, J. S. Mudolwey and P. van den Driessche, Global stability of SEIRS model in epidemiology, Can. Appl. Math. Q., 7(4)(1999), pp. 409-425.

[35] X. Lin and J. W. H. So, Global stability of the endemic equilibrium and uniform persistence in epidemic models with subpopulations, J. Aust. Math. Soc., ser. B, 34 (1993), pp. 282-295.

[36] D. G. Luenberger, Introduction to dynamics theory models and application, John Wiley and New York, (1979).

[37] A. Lyapunov, problème général de stabilité du mouvement,Ann. of Math. stud.,vol 17 Philadelphia, (1976).

[38] D. P. Mason, F. E. McKenzie, and W. H. Bossert, the blood-staged dynamics of mixed plasmodium malariae-plasmodium falciparum infections, J. Theoret. Biol., 198(1999), pp. 549-566.

[39] C. C. McCluskey, Global stability for a class of mass action systems allowing for in tuberculosis, J. Math., Anal. Appl. (2007).

[40] C. C. McCluskey and P. Van den Driessche, Global analysis of two tuberculosis models, Journal of Dynamics and Différential Equations, Vol N°1 , January 2004.

[41] C. C. McCluskey, P. van den Driessche, Global analysis of two tuberculosis models, J. Diff. Equations, 16(1)(2004), pp. 139-166.

[42] C. C. McCluskey and P. Van den Driessche, Global analysis of two tuberculosis models, Journal of Dynamics and Différential Equations, Vol N°1 January 2004.

[43] F. E. McKenzie and W. H. Bossert, The dynamics of plasmodium falciparum blood-stage infection, J. Theoret. Biol., 188(1997), pp. 127-140.

[44] F. E. McKenzie and W.H. Bossert, The optimal production of gametocytes by plasmodium falciparum, J. Theoret. Biol., 193(1998), pp. 419-428.

[45] D. P. Moualeu, Analyse globale d'une classe de modèles épidémiologiques, Mémoire de DIPES II, ENS-UYI, (2008).

Mémoire de DEA:

Dany Pascal MOUALEU c~, UYI 2008

[46] D. P. Moualeu, Estimation des états et paramè tres dans un modèle épidémiologique, Mémoire de maîtrise, Université de Douala, Cameroun, (2007).

[47] C. P. Simon and J.A. Jacquez, Reproduction numbers and the stability of equilibria of S. I. models for heterogeneous populations, SIAM J. Appl. Math., 52(2)(1992), pp. 541-576.

[48] J. J. Tewa, Analyse globale des modèles épidémiologiques multicompartimentaux : Application à des modèles intra-hôtes de paludisme et de VIH, Thèse de doctorat, Université de Metz, (2007)

[49] P. van den Driessche, J. Watmough, Reproduction numbers and sub-treshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29-48.

[50] http :// www.sida-info-service.org/informer/proteger/transmission.php4.

[51] Ministère de la Santé Publique, Programme National de Lutte contre la Tuberculose, Guide technique pour le personnel de santé, (2001).

Mémoire de DEA:

Dany Pascal MOUALEU c~, UYI 2008

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Il faut répondre au mal par la rectitude, au bien par le bien."   Confucius