WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Analyse des déterminants de l'adoption des semences améliorées au Niger. Cas du mil.

( Télécharger le fichier original )
par Abdoul Naser YAHAYA Moussa
PTCI (Programme de Troisième Cycle Interuniversitaire) a là¢â‚¬â„¢Université Ouaga II - Diplôme dà¢â‚¬â„¢Études Approfondies (DEA) en Économie, option Économie et Politique Agricoles 2014
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

ANNEXES

1. Estimation du modèle

. heckman Rendmttha Prosupficicultiha Utilisatractanimal Exprience Tailm Accengrai, twostep select(Adoption = Agechef Sexe > Exprience Lalphachef Tailm Prosupficicultiha Revhormen Accscrdi LAOP dispSem) rhosigma

Heckman selection model -- two-step estimates Number of obs = 50

(regression model with sample selection) Censored obs = 15

Uncensored obs = 35

Wald chi2(5) = 263.70

Prob > chi2 = 0.0000

 
 
 

z

P>|z|

 
 

Rendmttha Prosupficicultiha Utilisatractanimal Exprience Tailm Accengrai _cons

1.92271

1.112522

.1819724

-.1785141

.2253017

-2.974736

.1276723 1.005524 .0923456 .4126237 1.238896 2.949352

15.06 1.11 1.97 -0.43 0.18 -1.01

0.000 0.269 0.049 0.665 0.856 0.313

1.672477

-.8582688

.0009782 -.9872418 -2.202891 -8.755359

 

Adoption

Agechef Sexe Exprience Lalphachef Tailm Prosupficicultiha Revhormen Accscrdi LAOP dispSem _cons

Coef.

.0868776 3.692501 .0671749 .1032777 1.619099 .1192774 -.0001855 6.862668 3.357243 .9469853 -13.37616

Std. Err.

.0516141 2.339588 .0717993 .7912702 .8221708 .1686474 .0001066 3.038351 1.682396 1.242066 6.027023

1.68 1.58 0.94 0.13 1.97 0.71 -1.74 2.26 2.00 0.76 -2.22

0.092 0.115 0.349 0.896 0.049 0.479 0.082 0.024 0.046 0.446 0.026

[95% Conf.

-.0142841 -.8930061 -.0735491 -1.447583 .0076741 -.2112654 -.0003944 .90761 .0598084 -1.487419 -25.18891

 

mills

lambda

-.6693853

1.643981

-0.41

0.684

-3.891529

 

rho

sigma

 
 
 
 
 
 
 

-0.24151

2.7716812

2. Prédiction du modèle

Probit model

 
 
 
 

D

 

Classified

True

32

3

~D

 
 

.

+

-

Total

Classified

True D defined

35

+ if predicted Pr(D)

1

14

15

 
 

Sensitivity

Specificity

Positive predictive value

Negative predictive value

Pr( +| D)

Pr( -|~D)

Pr( D| +)

Pr(~D| -)

 

False + rate for true ~D False + rate for classified +

Pr( +|~D)

Pr( -| D)

Pr(~D| +)

Pr( D| -)

 

False - rate for true D

Correctly classified

 
 

Interval] 2.172943 3.083313 .3629665 .6302135 2.653494 2.805887 .1880393 8.278009 .2078989 1.654139 3.230525 .4498202 .0000233 12.81773 6.654678 3.381389 -1.563411 2.552758

for Adoption

Total

33

17

as Adoption != 0

>= .5

50

91.43%

93.33% 96.97% 82.35% False - rate for classified -

6.67%

8.57%

3.03%

17.65%

92.00%

DEA-Master/NPTCI Page 33

3. Calcul des effets marginaux

. dprobit Adoption Agechef Sexe Exprience Lalphachef Tailm Prosupficicultiha Revhormen Accscrdi LAOP dispSem

Iteration 0: log likelihood = -30.543215

Iteration 1: log likelihood = -15.18848

Iteration 2: log likelihood = -12.158841

Iteration 3: log likelihood = -10.665289

Iteration 4: log likelihood = -9.9596533

Iteration 5: log likelihood = -9.6543512

Iteration 6: log likelihood = -9.5793765

Iteration 7: log likelihood = -9.5770366

Iteration 8: log likelihood = -9.5770348

Probit regression, reporting marginal effects Number of obs = 50

LR chi2(10) = 41.93

Prob > chi2 = 0.0000

Log likelihood = -9.5770348 Pseudo R2 = 0.6864

dF/dx Std. Err. z P>|z| x-bar [ 95% C.I. J

Adoption

Agechef

Sexe*

Exprie~e

Lalpha~f*

Tailm

Prosup~a

Revhor~n

Accscrdi*

LAOP*

dispSem*

.0012022 .0037197 1.68 0.092 51.48 -.006088 .008493

.5260741 .3216911 1.58 0.115 .72 -.104429 1.15658

.0009296 .0028064 0.94 0.349 15.04 -.004571 .00643

.0014099 .0134635 0.13 0.896 .44 -.024978 .027798

.0224051 .0640586 1.97 0.049 2.98 -.103147 .147958

.0016506 .0045503 0.71 0.479 7.714 -.007268 .010569

-2.57e-06 6.99e-06 -1.74 0.082 31948 -.000016 .000011

.9905668 .0293363 2.26 0.024 .72 .933069 1.04806

.4300904 .2710561 2.00 0.046 .72 -.10117 .961351

.0217997 .0492427 0.76 0.446 .64 -.074714 .118314

obs. P

pred. P

.7

.9952406 (at x-bar)

(*) dF/dx is for discrete change of dummy variable from 0 to 1

z and P>|z| correspond to the test of the underlying coefficient being 0

.

DEA-Master/NPTCI Page 34

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy





Changeons ce systeme injuste, Soyez votre propre syndic





"Il existe une chose plus puissante que toutes les armées du monde, c'est une idée dont l'heure est venue"   Victor Hugo