WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Impact du réchauffement climatique sur la distribution spatiale des ressources halieutiques le long du littoral français: observations et scénarios

( Télécharger le fichier original )
par Sylvain Lenoir
Université Lille 1 Science - Doctorat 2011
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

2.2. Perspectives

Bien que durant la thèse, le modèle NPPEN ait été employé sur une multitude d'espèces de poissons mais également sur quelques invertébrés marins, il n'a pas encore été tenté de réaliser une approche multi-spécifique à proprement parlé. Une étude de l'évolution d'assemblages d'espèces, de même qu'une évaluation de la diversité ichtyologique en mer du Nord sont envisagées. Cette approche permettra d'évaluer les changements possibles qui attendent la structure et l'organisation des assemblages d'espèces et la biodiversité marine.

Originalement destiné à effectuer des simulations de distribution spatiale des espèces à macro-échelle, le modèle NPPEN est en phase de test à l'échelle plus locale, au sein du programme SURCOTE (LITEAU III) pour modéliser l'évolution spatiale des ressources marines (poissons, mollusques bivalves et gastéropodes, herbiers et biostromes ; Rombouts et al., en préparation)4(*). Ce projet scientifique est destiné à analyser l'évolution des communautés benthiques le long des côtes françaises en Manche. Si les paramètres environnementaux utilisés jusqu'alors (température, bathymétrie, salinité, nature du sédiment) ne sont clairement pas suffisants pour rendre compte de la distribution fine des espèces étudiées le long d'une côte d'une centaine de kilomètres, les premiers résultats obtenus restent tout de même très intéressants. L'application de ce modèle nécessite d'être poursuivi par l'ajout de descripteurs environnementaux plus en rapport avec la distribution des organismes à cette échelle locale. D'un point de vue purement technique, cette démarche constitue un réel exercice permettant de mieux cerner les limites et les conditions d'applicabilité du modèle NPPEN.

Le modèle NPPEN a également été transposé aux données du Service d'Observation en Milieu LITtoral (SOMLIT). Ce programme d'observation du littoral français a pour mission de prélever, selon un protocole d'acquisition commun, un ensemble de paramètres physiques, chimiques et biologiques dans le but de déconvoluer l'influence des forçages anthropiques de la variabilité climatique naturelle. Dans ce contexte scientifique, le modèle NPPEN a permis l'élaboration d'états de référence relatifs des systèmes, rendant possible la détection et la quantification, en quasi temps réel, des perturbations consécutives des activités anthropogéniques (Goberville et al., 2010 ; Goberville et al., soumis-a, Goberville et al., soumis-b)

Dans le cadre du nouveau projet BIODIMAR, destiné au suivi et à l'anticipation de l'impact des changements globaux sur la biodiversité marine du Nord-Pas-de-Calais, le modèle NPPEN sera l'outil principal utilisé pour la réalisation d'un des objectifs majeurs de ce projet : l'établissement des projections sur l'évolution de la biodiversité marine en région Nord-Pas-Calais et en particulier sur les systèmes planctonique, nectonique, « forêt de laminaires » et macrofaune benthique.

Enfin, le modèle NPPEN est utilisé dans le cadre d'une étude visant à caractériser la variabilité temporelle et spatiale des provinces biogéochimiques de Longhurst. Les fluctuations qui touchent ces provinces sont envisagées aux échelles saisonnières, interannuelles et décennales, dans le but d'en évaluer et d'en quantifier la mobilité (Reygondeau et al., soumis)5(*).

REFERENCES BIBLIOGRAPHIQUES

-A-

Aebischer, N. J., Coulson, J. C. & Colebrook, J. M. (1990) Parallel long-term trends across four marine trophic levels and weather. Nature, 347, 753-755.

Alheit, J. (2007) Consequences of regime shifts for marine food webs. International Journal of Earth Sciences.

Amara, R., Mahé, K., Lepape, O. & Desroy, N. (2004) Growth, feeding and distribution of the solenette Buglossidium luteum with particular reference to its habitat preference. Journal of Sea Research, 51, 211-217.

Andrews, J. M., Gurney, W. S., Heath, M. R., Gallego, A., O'brien, C. M., Darby, C. & Tyldesley, G. (2006) Modelling the spatial demography of Atlantic cod (Gadus morhua) on the European continental shelf. Canadian Journal of Fisheries and Aquatic Sciences, 63, 1027-1048.

Antonov, J. I., Levitus, S. & Boyer, T.P. (2005) Thermosteric sea level rise, 1955-2003. Geophysical Research Letters, 32, L12602-L12604

Araújo, M. B., Whittaker, R. J., Ladle, R. J & Erhard, M. (2005) Reducing uncertainty in projections of extinction risk from climate change. Global Ecology & Biogeography, 14, 529-538.

Austin, M. (2007) Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200, 1-19.

Austin, M. P., Belbin, L., Meyers, J. A., Doherty, M. D. & Luoto, M. (2006) Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory. Ecological Modelling, 199, 197-216.

-B-

Bahn, V. & McGill, B. J. (2007) Can niche-based distribution models outperform spatial autocorrelation? Global Ecology and Biogeography, 16, 733-742.

Bakun, A. (2005) Regime Shifts. In: Robinson A. R. & Brink K.(eds), The Sea, No.13, Harvard University Press, pp. 971-1026. Cambridge, Massachusetts.

Barange, M. & Harris, R. (2003) Marine ecosystems and global change, edn. International Geosphere-Biosphere Programme Science Series No.5, pp 32. Stockholm.

Baumgartner, T. R., Soutar, A. & Ferreira-Bartrina, V. (1992) Reconstruction Of The History Of Pacific Sardine And Northern Anchovy Populations Over The Past Two Millennia From Sediments Of The Santa Barbara Basin, California. CalCOFl Rep. CalCOFI.

Beare, D. J., Burns, F., Greig, A., Jones, E. G., Peach, K., Kienzle, M., McKenzie, E. & Reid, D. G. (2004a) Long-term increases in prevalence of North Sea fishes having southern biogeographic affinities. Marine Ecology Progress Series, 284, 269-278.

Beare, D. J., Burns, F., Jones, E., Peach, K., Portilla, E., Greig, T., Mckenzie, E. & Reid, D. (2004b) An increase in the abundance of anchovies and sardines in the north-western North Sea since 1995. GLobal Change Biology, 10, 1209-1213.

Beaugrand, G. (2004) The North Sea regime shift: evidence, causes, mechanisms and consequences. Progress in Oceanography, 60, 245-262.

Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. (2003) Plankton effect on cod recruitment in the North Sea. Nature, 426, 661-664.

Beaugrand G., Edwards, M., Brander, K. M., Luczak, C., & Ibanez, F. (2008) Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecology letters, 11, 1157-1168.

Beaugrand, G., Edwards, M. & Legendre, L. (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. Proceedings of the National Academy of Sciences, 107, 10120-10124.

Beaugrand, G. & Helaouët, P. (2008) Simple procedures to assess and compare the ecological niche of species. Marine Ecology Progress Series, 363, 29-37.

Beaugrand, G. & Ibañez, F. (2002) Spatial dependence of calanoid copepod diversity in the North Atlantic Ocean. Marine Ecology Progress Series, 232, 197-211.

Beaugrand, G. & Ibañez, F. (2004) Monitoring marine plankton ecosystems (2): long-term changes in North Sea calanoid copepods in relation to hydro-meteorological variability. Marine Ecology Progress Series, 284, 35-47.

Beaugrand, G. & Goberville, E. (2010) Conséquences des changements climatiques en milieu océanique. Vertigo, la revue électronique en sciences de l'environnement. Hors-série n°8.

Beaugrand, G. & Kirby, R. R. (2010a) Climate, plankton and cod. Global Change Biology, 16, 1268-1280.

Beaugrand, G. & Kirby, R. R. (2010b) Spatial changes in the sensitivity of Atlantic cod to climate-driven effects in the plankton. Cimate Research, 41, 15-19.

Beaugrand, G., Lenoir, S., Ibañez, F. & Manté, C. (Sous presse) A new model to assess the probability of occurrence of a species based on presence-only data. Marine Ecology Progress Series.

Beaugrand, G., Lindley, J. A., Helaouët, P. & Bonnet, D. (2007) Macroecological study of Centropages typicus in the North Atlantic Ocean. Progress in Oceanography, 72, 259-273.

Beaugrand, G., Luczak, C. & Edwards, M. (2009) Rapid biogeographical plankton shifts in the North Atlantic Ocean. GLobal Change Biology, 15, 1790-1803.

Beaugrand, G., Reid, D., Ibañez, F., Lindley, J. A. & Edwards, M. (2002a) Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science, 296, 1692-1694.

Beaugrand, G., Reid, D. & Ibañez, F. (2002b) Major reorganisation of North Atlantic pelagic ecosystems linked to climate change. GLOBEC International Newsletter, 30-33.

Beaugrand, G. & Reid, P. C. (2003) Long-term changes in phytoplankton, zooplankton and salmon linked to climate change. GLobal Change Biology, 9, 801-817.

Berry, P. M., Dawson, T. P., Harrison, P. A., Pearson, R. G. (2002) Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Global Ecology & Biogeography, 11, 453-462

Bigg, G. R., Cunningham, C. W., Ottersen, G., Pogson, G. H., Wadley, M. R. & Williamson, P. (2008) Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics. Proceedings of the Royal Society B: Biological Sciences, 275, 163-173.

Björnsson, B., Steinarsson, A. & Oddgeirsson, M. (2001) Optimal temperature for growth and feed conversion of immature cod (Gadus morhua L.). ICES Journal of Marine Science, 58, 29-38.

Boddeke, R. & Vingerhoed, B. (1996) The anchovy returns to the Wadden Sea. ICES Journal of Marine Science, 53, 5.

Boerema, L. K., Saetersdal, G., Tsukayama, I., Valdivia, J. & Alegre, B. (1965) Report on the effects of fishing on the Peruvian stock of anchovy. FAO Fisheries Technical Papers, No. 55, pp 44.

Botsford, L. W., Castilla, J. C. & Peterson, C. H. (1997) The Management of Fisheries and Marine Ecosystems. Science, 277, 509-515.

Brander, K. M. (2000) Effects of environmental variability on growth and recruitment in cod (Gadus morhua) using a comparative approach. Oceanologica Acta, 23, 485-496.

Brander, K. M. (2003) What kind of fish stock predictions do we need and what kind of information will help us to make better prediction? Scientia Marina, 67, 21-33.

Brander, K. M. (2005) Cod recruitment is strongly affected by climate when stock biomass is low. ICES Journal of Marine Science: Journal du Conseil, 62, 339-343.

Brander, K. M. (2007) Global fish production and climate change. Proceedings of the National Academy of Sciences, 104, 19709-19714.

Brander, K. M. (2010) Impacts of climate change on fisheries. Journal of Marine Systems, 79, 389-402.

Brander, K. M., Blom, G., Borges, M. F., Erzini, K., Henderson, G., Mackenzie, B. R., Mendes, H., Ribeiro, J., Santos, A. M. P. & Toresen, R. (2003) Changes in fish distribution in the eastern North Atlantic: Are we seeing a coherent response to changing temperature? ICES Journal of Marine Science, 219, 261-270.

Brander, K. M. & Mohn, R. (2004) Effect of the North Atlantic, Oscillation on recruitment of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 61, 558-1564.

Brander, K. M., Ottersen, G., Wieland, K. & Lilly, G. (2006) Decline and recovery of North Atlantic cod stocks. GLOBEC international Newsletter, 12, 10-12.

Brito, C., Crespo, E. G. & Paulo, O. S. (1999) Modelling wildlife distributions: Logistic Multiple Regression vs Overlap Analysis. Ecography, 22, 251-260.

Brook, B. W., Akçakaya, H. R., Keith, D. A., Mace, G. M., Pearson, R. G. & Araújo, M. B. (2009) Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biology Letters, 5, 723-725.

Brotons, L., Thuiller, D., Araújo, M. B. & Hirzel, A. (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 27, 437-448.

Busby, J. R. (1996) BIOCLIM - a bioclimatic analysis and prediction system Nature Conservation: cost effective biological surveys and data analysis, CSIRO Australia, pp 64-68. Melbourne.

-C-

Calenge, C., Darmon, G., Basille, M., Loison, A. & Jullien, J. M. (2008) The factorial decomposition of the Mahalanobis distances in habitat selection studies. Ecology, 89, 555-566.

Cardinale, M. & Svedäng, H. (2004) Modelling recruitment and abundance of Atlantic cod, Gadus morhua, in the eastern Skagerrak-Kattegat (North Sea): evidence of severe depletion due to a prolonged period of high fishing pressure. Fisheries Research, 69, 263-282.

Carpenter, G., Gillison, A. N. & Winter, J. (1993) DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation, 2, 667-680.

Cayuela, L. (2004) Habitat evaluation for the Iberian wolf Canis lupus in Picos de Europa National Park, Spain. Applied Geography, 24, 199-215.

Cheung, W. W. L., Close, C., Lam, V., Watson, R. & Pauly, D. (2008b) Application of macroecological theory to predict effects of climate change on global fisheries potential. Marine Ecology Progress Series, 365, 187-197.

Cheung, W. W. L., Lam, V. W. Y. & Pauly, D. (2008a) Dynamic bioclimate envelope model to predict climate-induced changes in distribution of marine fishes and invertebrates. In Modelling Present and Climate-shifted Distributions of Marine Fishes and Invertebrates (ed. by W.W.L. Cheung & V.W.Y. Lam & D. Pauly), Fisheries Centre Research Reports, University of British Columbia UBC, No.16(3), 72 pp.FC-Vancouver.

Cheung, W. W. L., Lam, N. S. N., Sarmiento, J. L., Kearney, K., Watson, R. & Pauly D. (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10, 235-251.

Christensen, V., Guénette, S., Heymans, J. J., Walthers, C. J., Watson, R., Zeller, D. & Pauly, D. (2003).

Cook, R. (2000) A rough guide to population change in exploited fish stocks. Ecology letters, 3, 394-398.

Cook, R. M., Sinclair, A. & Stefansson, G. (1997) Potential collapse of North Sea cod stocks. Nature, 385, 521-522.

Cornelius, J. M. & Reynolds, J. F. (1991) On determining the statistical significance of discontinuities within ordered ecological data. Ecology, 72, 2057-2070.

CPR (Continuous Plankton Records) Survey Team: Barnard, R., Batten, S., Beaugrand, G., Buckland, C., Conway, D. V. P., Edwards, M., Finlayson, J., Gregory, L. W., Halliday, N. C., John, A. W. G., Johns, D. G., Johnson, A. D., Jonas, T. D., Lindley, J. A., Nyman, J., Pritchard, P., Reid, P. C., Richardson, A. J., Saxby, R. E., Sidey, J., Smith, M. A., Stevens, D. P., Taylor, C. M., Tranter, P. R. G., Walne, A. W., Wootton, M., Wotton, C. O. M., Wright, J. C. (2004) Continuous Plankton Records: Plankton atlas of the North Atlantic Ocean (1958-1999): II. Biogeographical charts. Marine Ecology Progress Series, 11-75.

Crisp, D. J. (1959) The Influence of Climatic Changes on Animals and Plants. The Geographical Journal, 125, 1-16.

Cury, P. M., Shin, Y.-J., Planque, B., Durant, J. M., Fromentin, J. M., Kramer-Schadt, S., Stenseth, N. C., Travers, M. & Grimm, V. (2008) Ecosystem oceanography for global change in fisheries. Trends in Ecology and Evolution, 23, 338-346.

Cushing, D. H. (1996) Towards a science of recruitment in fish populations, edn. Ecology Institute, 175 pp. Oldendorf/Luhe.

-D-

Daskalov, G. M. (1999) Relating fish recruitment to stock biomass and physical environment in the Black Sea using generalized additive models. Fisherie Research, 41, 1-23.

Daskalov, G. M., Grishin, A. N., Rodionov, S. & Mihneva, V. (2007) Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences USA, 104, 10518-10523.

Daunt, F., Wanless, S., Greenstreet, S. P., Jensen, H., Hamer, K. C. & Harris, M. P. (2008) The impact of the sandeel fishery closure on seabird food consumption, distribution, and productivity in the northwestern North Sea. Canadian Journal of Fisheries and Aquatic Sciences, 65, 362-381.

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Kimberly S. Sheldon, Ghalambor, C. K., Haak, D. C. & Martin, P. R. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668-6672.

Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. (2008) Birds are tracking climate warming, but not fast enough. Proceeding of The Royal Society B., 275, 2743-2748.

DeYoung, B., Harris, R., Alheit, J., Beaugrand, G. & Shannon, L. (2004) Detecting regime shifts in the ocean: data considerations. Progress in Oceanography, 60, 143-164.

Diniz-Filho, J. A. F., Bini, L. M. & Hawkins, A. D. (2003) Spatial autocorrelation and red herrings in geographical ecology. Global Ecology & Biogeography, 12, 53-64.

Dippner, J. W. (1997) Recruitment Success of Different Fish Stocks in the North Sea in Relation to Climate Variability. German Journal of Hydrography, 49, 277-293.

Dormann, C. F. (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data Global Ecology & Biogeography, 16, 129-128.

Dormann, C. F., Mcpherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W., Kissling, D., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M. & Wilson, R. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30, 609-628.

Drinkwater, K. F. (2005) The response of Atlantic cod (Gadus morhua) to future climate change. ICES Journal of Marine Science, 62, 1327-1337.

Drinkwater, K. F. (2006) The regime shift of the 1920s and 1930s in the North Atlantic. Progress in Oceanography, 68, 134-151.

Drinkwater, K. F., Beaugrand, G., Kaeriyama, M., Kim, S., Ottersen, G., Perry, I., Portner H.O., Polovina, J. & Takasuka, A. (2010) On the processes linking climate to ecosystem changes. Journal of Marine Systems, 79, 374-388.

-E-

Edwards, M., Beaugrand, G., Reid, D., Rowden, A. & Jones M. B. (2002) Ocean climate anomalies and the ecology of the North Sea. Marine Ecology Progress Series, 239, 1-10.

Edwards, M. & Richardson, A. J. (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430, 881-884.

Elton, C. (1927) Animal ecology, edn. Sidgwick and Jackson, 296 pp. London.

Enghoff, I. B., Mackenzie, B. R. & Nielsen, E. E. (2007) The Danish fish fauna during the warm Atlantic period (ca. 7000-3900 bc): Forerunner of future changes? Fisheries Research, 87, 167-180.

Etherington, T. R., Ward, A. I., Smith, G. C., Pietravalle, S. & Wilson, G. V. (2009) Using the Mahalanobis distance statistic with unplanned presence-only survey data for biogeographical models of species distribution and abundance: a case study of badger setts. Journal of Biogeography, 36, 845-853.

-F-

FAO Fisheries and Aquaculture Department (2009) The State of World Fisheries and Aquaculture - 2008 (SOFIA). FAO Fisheries and Aquaculture Department. 216 pp. Rome

Farber, O. & Kadmon, R. (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling, 160, 115-130.

Finney, B. P., Gregory-Eaves, I., Sweetman, J., Douglas, M. S. V. & Smol, J. P. (2000) Impacts of climatic change and fishing on Pacific salmon abundance over the past 300 years. Science, 290, 795-799.

Fisher, J. A. D. & Frank, K. T. (2002) Changes in finfish community structure associated with an offshore fishery closed area on the Scotian Shelf. Marine Ecology-Progress Series, 240, 249-265.

Fleischer, D., Schaber, M. & Piepenburg, D. (2007) Atlantic snake pipefish ( Entelurus aequoreus ) extends its northward distribution range to Svalbard (Arctic Ocean). Polar Biology, 30, 1359-1362.

Francis, R. C., Hare, S. R., Hollowed, A. B. & Wooster, W. S. (1998) Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fisheries Oceanography, 7, 1-21.

Frank, K. T., Petrie, B., Choi, J. S. & Leggett, W. C. (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science, 308, 1621-1623.

Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. (2006) From plankton to top predators: bottom-up control of a marine food web across four trophic levels. Journal of Animal Ecology, 75, 1259-1268.

Frederiksen, M., Wanless, S., Harris, M. P., Rothery, P. & Wilson, L. J. (2004) The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. Journal of Applied Ecology, 41, 1129-1139.

Frederiksen, M., Wright, P. J., Harris, M. P., Mavor, R. A., Heubeck, M. & Wanless, S. (2005) Regional patterns of kittiwake Rissa tridactyla breeding success are related to variability in sandeel recruitment. Marine Ecology Progress Series, 300, 201-211.

Froese, R. & Pauly, D. (eds) (2009) FishBase. World Wide Web electronic publication. Available at: http://www.fishbase.org accessed: 2007, version (01/2007)

Frontier, S. & Pichot-Viale, D. (1993) Ecosystèmes. Structure, fonctionnement, évolution, edn. Masson, 549 pp. Paris.

-G-

Genner, M. J., Sims, D. W., Wearmouth, V. J., Southall, E. J., Southward, A. J., Henderson, P. A. & Hawkins, S. (2004) Regional climatic warming drives long-term community changes of British marine fish. Proceedings - Royal Society of Edinburgh. Section B: Biology, 271, 655-661.

Goberville, E., Beaugrand, G., Sautour, B. & Tréguert, P. (Soumis-a) Climate modulation of the anthropogenic fertilisation.

Goberville, E., Beaugrand, G., Sautour, B. & Tréguert, P. (Soumis-b) New procedures and indices to evaluate human fertilisation in coastal systems.

Goberville, E., Beaugrand, G., Sautour, B., Tréguert, P. & Team, S. (2010) Climate-driven changes in coastal marine systems of western Europe. Marine Ecology Progress Series, 408, 129-148.

Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B. & Wood, R. A. (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley centre coupled model without flux adjustments. Climate dynamics, 16, 147-168.

Gregory, R. D., Willis, S. G., Jiguet, F., Voøíek, P., Klvaòovávan, A., Van Strien, A., Huntley, B., Collingham, Y. C., Couvet, D. & Green, R. E. (2009) An Indicator of the Impact of Climatic Change on European Bird Populations. PLoS ONE, 4, e4678.

Grémillet, D., Pichegru, L., Kuntz, G., Woakes, A. G., Wilkinson, S., Crawford, R. J. M. & Rya, P. G. (2008) A junk-food hypothesis for gannets feeding on fishery waste. Proceedings of the Royal Society B, 275, 1149-1156.

Grémillet, D. & Boulinier, T. (2009) Spatial ecology and conservation of seabirds facing global climate change: a review. Marine Ecology Progress Series, 391, 121-137.

Grinnell, J. (1917) The niche-relationships of the California Thraser. Auk, 34, 427-433.

Guinotte, J. M., Bartley, J. D., Iqbal, A., Fautin, D. G. & Buddemeier, R. W. (2006) Modeling habitat distribution from organism occurrences and environmental data: case study using anemonefishes and their sea anemone hosts. Marine Ecology Progress Series, 316, 269-283.

Guisan, A., Edwards, T. C., Jr. & Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157, 89-100.

Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology letters, 8, 993-1009.

Guisan, A. & Wilfried, T. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993-1009.

Guisan, A. & Zimmermann, N. E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186.

-H-

Hare, S. R. & Mantua, N. J. (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography, 47, 103-145.

Harris, D. P., & Wanless, S. (1997) Breeding success, diet, and brood neglect in the kittiwake (Rissa tridactyla) over an 11-year period. ICES Journal of Marine Science, 54, 6115-6623.

Harris, M. P., Beare, D., Toresen, R., Nøttestad, L., Kloppmann, M., Dörner, H., Peach, K., Rushton, D., Foster-Smith, J. & Wanless, S. (2007) A major increase in snake pipefish (Entelurus aequoreus) in northern European seas since 2003: potential implications for seabird breeding success. Marine Biology, 151, 973-983.

Harris, M. P., Newell, M., Daunt, F., Speakman, J. R. & Wanless, S. 2008. Snake Pipefish Entelurus aequoreus are poor food for seabirds. Ibis, 150, 413-415.

Harrison, P. A., Berry, P. M., Butt, N. & New, M. (2006) Modelling climate change impacts on species' distributions at the European scale: implications for conservation policy Environmental Science & Policy, 92, 116-128.

Hastie, T. J. & Tibshirani, R. J. (1990) Generalized Additive Models, edn. Chapman and Hall, 335 pp. London.

Heath, M. R. & Lough, R. G. (2007) A synthesis of large-scale patterns in planktonic prey of larval and juvenile cod (Gadus morhua). Fisheries Oceanography, 16, 169-185.

Hedger, R., Mckenzie, E., Heath, M., Wright, P., Scott, B., Gallego, A. & Andrews, J. (2004) Analysis of the spatial distributions of mature cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) abundance in the North Sea (1980-1999) using generalised additive models. Fisherie Research, 70, 17-25.

Helaouët, P. & Beaugrand, G. (2009) Physiology, Ecological Niches and Species Distribution. Ecosystems, 12, 1235-1245

Hiddink, J. G. & Ter Hofstede, R. (2008) Climate induced increases in species richness of marine fishes. GLobal Change Biology, 14, 453-460.

Hilbert, D. W. & Ostendorf, B. (2001) The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates. Ecological Modelling, 146, 311-327.

Hilborn, R. & Walters, C. J. (1992) Quantitative fisheries stock assessment: Choice, dynamics and uncertainty. Reviews in Fish Biology and Fisheries, 2, 177-178.

Hirzel, A. H. (2001) When GIS come to life. Linking landscape- and population ecology for large population management modelling: the case of Ibex (Capra ibex) in Switzerland. Thèse de doctorat, Faculté des Sciences de L'Université de Lausanne, 114 pp.

Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology, 83, 2027-2036.

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199, 142-152.

Hotelling, H. (1931) The generalization of the Student's ratio. Annals of Mathematical Statistics, 2, 360-378.

Hsieh, C.-H, Glaser, S. M., Lucas, A. J., & Sugihara, G. (2005) Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature, 435, 336-340.

Hsieh, C.-H., Reiss, C. S., Hunter, J. R., Beddington, J. R., May, R. M. & Sugihara, G. (2006) Fishing elevates variability in the abundance of exploited species. Nature, 443, 859-862.

Hughes, L. (2000) Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution, 15, 56-61.

Huntley, B., Green, R., Collingham, Y. & Willis, S. (2008) A Climatic atlas of European Breeding Birds edn. The RSPB and Lynx Edicions, Durham University, 528 pp. Barcelona.

Hurrell, J.W., Yochanan, K. & Visbeck, M. (2001). The North Atlantic Oscillation. Science 291, 603-605.

Hutchings, J. A. (2000) Collapse and recovery of marine fishes. Nature, 406, 882-885.

Hutchinson, G. E. (1957) Concluding remarks. Cold Spring Harbor Symposium Quantitative Biology, 22, 415-427.

-I-

Ibañez, F. (1981) Immediate detection of heterogeneities in continuous multivariate, oceanographic recordings. Application to time series analysis of changes in the bay of Villefranche sur Mer. Limnology and Oceanography, 26, 336-349.

ICES (2005a) Spawning and life history information for North Atlantic cod stocks. ICES Cooperative Research Report, 274, Copenhagen.

ICES. (2005b) Report of the study group on multispecies assessment in the North Sea (SGMSNS). ICES CM 2005/D:06. International Council for the Exploration of the Sea, Copenhagen.

ICES (2007) Report of the ICES advisory committee on fishery management, advisory committee on the marine environment and advisory committee on ecosystems, 2007, ICES Advice. Book 2, Copenhagen

Intergovernmental Panel on Climate Change, W. G. I. (2007a) Climate change 2007: Impacts, Adaptation and Vulnerability, edn. Cambridge University Press, 973 pp.Cambridge.

Intergovernmental Panel on Climate Change, W. G. I. (2007b) Climate change 2007: The physical science basis, edn. Cambridge University Press, 881 pp. Cambridge.

-J-

Jennings, S., Kaiser, M. J. & Reynolds, J. D. (2001) Marine Fisheries Ecology, edn. Blackwell Science Ltd., 417 pp. Oxford.

Jennings, S. & Brander, K. M. (2010) Predicting the effects of climate change on marine communities and the consequences for fisheries. Journal of Marine Systems, 79, 418-426.

Johns, T. C., Durman, C. F., Banks, H. T., Roberts, M. J., McLaren, A. J., Ridley, J. K., Senior, C. A., Williams, K. D., Jones, A., Rickard, G. J., Cusack, S., Ingram, W. J., Crucifix, M., Sexton, D. M. H., Joshi, M. M., Dong, B. W., Spenser, H., Hill, R. S. R., Gregory, J. M., Keen, A. B., Pardaens, A. K., Lowe, J. A., Bodas-Salcedo, A., Stark, S. & Searl, Y. (2006) The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. Journal of climate, 19, 1327-1353.

Jurado-Molina, J. & Livingston, P. (2002) Climate-forcing effects on trophically linked groundfish populations: implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences, 59, 1941-1951.

-K-

Kaschner, K., Ready, J., Agbayani, E., Eastwood, P., Rees, T., Reyes, K., Rius, J. & Froese, R. (2007) About AquaMaps: Creating standardized range maps of marine species.

Kaschner, K., Watson, R., Trites, A. W. & Pauly, D. (2006) Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Marine Ecology Progress Series, 316, 285-310.

Kearney, M. (2006) Habitat, environment and niche: what are we modelling? Oikos, 115, 186-191.

Kearney, M. & Porter, W. P. (2004) Mapping the fundamental niche: Phisiology, Climate, and the Distribution of a nocturnal lizard. Ecology, 85, 3119-3131.

Kell, L. T., Pilling, G. M., O'brien, C. M. (2005) Implications of climate change for the management of North Sea cod (Gadus morhua). ICES Journal of Marine Science, 62, 1483-1491.

Kirby, R. R., Beaugrand, G. (2009) Trophic amplification of climate change. Proceedings of the Royal Society London B: Biological Sciences, 276, 4095-4103.

Kirby, R. R., Beaugrand, G. & Lindley, J. A. (2008) Climate-induced effects on the meroplankton and the benthic-pelagic ecology of the North Sea. Limnology and oceanography, 53, 1805-1815.

Kirby, R. R., Beaugrand, G. & Lindley, J. A. (2009) Synergistic Effects of Climate and Fishing in a Marine Ecosystem. Ecosystems, 12, 548-561.

Kirby, R. R., Johns, D. G. & Lindley, J. A. (2006) Fathers in hot water: rising sea temperatures and a Northeastern Atlantic pipefish baby boom. Biology Letters, 2, 597-600.

-L-

Lacoste, A. & Salanon, R. (2001) Eléments de biogéographie et d'écologie (ed. Armand Colin), pp 318. Nathan, Paris.

Legendre, P. & Legendre, L. (1983) Echantillonnage et traitement des données. In: Stratégies d'échantillonnage en écologie. (ed. Frontier S), pp. 163-216. Masson, Paris

Legendre, P. & Legendre, L. (1998) Numerical Ecology, Elsevier Science B.V., Amsterdam.

Lehodey, P., Alheit, J., Barange, M., Baumgartner, T., Beaugrand, G., Drinkwater, K. F., Fromentin, J. M., Hare, S. R., Ottersen, G., Perry, R. I., Roy, C., Van Der Lingen, C. D. & Werner, F. (2006) Climate variability, Fish and Fisheries. Journal of Climate, 19, 5009-5030.

Leibold, M. A. (1995) The Niche Concept Revisited: Mechanistic Models and Community Context. Ecology, 76, 1371-1382.

Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J. & Aulagnier, S. (1996) Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90, 39-52.

Lenoir, S., Beaugrand, G. & Lecuyer, E. (2010) Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Global Change Biology, 17.

Levitus, S. (1982) Climatological Atlas of the World Ocean. In: NOAA Professionnal Papers.. edn. U.S. Government printing office, 173 pp. Washington, D.C.

Levitus, S., Antonov, J. & Boyer, T. (2005) Warming of the world ocean, 1955-2003. Geophys. Res. Lett., 32, L02604.

Lewis, S., Wanless, S., Wright, P. J., Harris, M. P., Bull, J. & Elston, D. A. (2001) Diet and breeding performance of black-legged kittiwakes Rissa tridactyla at a North Sea colony. Marine Ecology Progress Series, 221, 277-284.

Lindley, J. A., Beaugrand, G., Luczak, C., Dewarumez J. M. & Kirby, R. R. (2010) Warm-water decapods and the trophic amplification of climate in the North Sea. Biology Letters, 6, 773-776.Longhurst, A. (1998) Ecological geography of the Sea, London, Academic Press.

Longhurst, A. (1998) Ecological geography of the Sea, edn. Academic Press, London.

Louisy, P. (2002) Guide d'identification des poissons marin: Europe et Méditerranée, (ed. Eugen Ulmer Eds), 430 pp. Milan: Eurolitho.

-M-

MacKenzie, B. R., & Myers, R. A. (2007) The development of the northern European fishery for north Atlantic bluefin tuna, Thunnus thynnus during 1900-1950. Fisheries Research, 87, 229-239.

Mahalanobis, P. C. (1936) On the generalized distance in statistics. Proceedings of the National Institute of Science of India, 12, 49-55.

Martínez-Meyers, E., Peterson, T. A. & Hargrove, W. W. (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology & Biogeography, 13, 305-314

Mastrorillo, S., Lek, S., Dauba, F. & Belaud, A. (1997) The use of artificial neural networks to predict the presence of small-bodied fish in a river. Freshwater Biology, 38, 237-246.

Mavor, R. A., Heubeck, M., Schmitt, S. & Parsons, M. (2006) Seabird numbers and breeding success in Britain and Ireland, 2005. Joint Nature Conservation Committee (UK Nature Conservation) No.30, Peterborough.

Mavor, R. A., Heubeck, M., Schmitt, S. & Parsons, M. (2008) Seabird numbers and breeding success in Britain and Ireland, 2006. Joint Nature Conservation Committee (UK Nature Conservation) No.30, Peterborough.

Mccullagh, P. & Nelder, J. A. (1983) Generalized Linear Models, edn. Chapman and Hall, pp. 261. London.

McFarlane, G. A., Schweigert, J., Macdougall, L. & Hrabok, C. (2005) Distribution and Biology of Pacific sardines (Sardinops sagax) off British Columbia, Canada. CalCOFI CalCOFI Report, No. 26, 17 pp.

Mielke, P. W., Berry, K. J. & Brier, G. W. (1981) Application of Multi-Response Permutation Procedures for examining Seasonal changes in monthly mean Sea-Level pressure patterns. Monthly Weather Review, 109, 120-126.

Mieszkowska, N., Sims, D. & Hawkins, S. (2007) Fishing, climate change and north-east Atlantic cod stocks. Summary report of commissioned scientific report for the World Wildlife Fund. WWF Marine Update, 59, 1-4.

Miller, T. J. (2007) Contribution of individual-based coupled physical-biological models to understanding recruitment in marine fish populations. Marine Ecology Progress Series, 347, 127-138.

Murphy, C. M. & Breed, M. (2007) A predictive distribution map for the giant tropical ant, Paraponera clavata. Journal of Insect Science, 7, 1-10.

Muthoni, F. K. (2010) Modelling the spatial distribution of snake species under changing climate scenario in Spain. Thèse de doctorat, University of Twente, 88 pp.

Myers, R. A., Hutchings, J. A. & Barrowman, N. J. (1996) Hypotheses for the decline of cod in the North Atlantic. Marine Ecology Progress Series, 138, 293-308.

Myers, R. A., Hutchings, J. A. & Barrowman, N. J. (1997) Why do fish stocks collapse? The example of cod in Atlantic Canada. Ecological Applications, 7, 91-106.

Myers, R. A. & Worm, B. (2003) Rapid worldwide depletion of predatory fish communities. Nature, 423, 280-283.

-N-

Nogués-Bravo, D., Rodriguez, J., Hortal, J., Batra, P. & Araújo, M. B. (2008) Climate Change, Humans, and the Extinction of the Woolly Mammoth. PLoS Biology, 6, 685-692.

-O-

O'brien, C. M., Fox, C. J., Planque, B. & Casey J (2000) Climate variability and North Sea cod. Nature, 404, 142.

Oedekoven, C. S., Ainley D. G. & Spear L. B. (2001) Variable responses of seabirds to change in marine climate : California Current, 1985-1994. Marine Ecology Progress Series, 212, 265-281.

Österblom, H., Casini, M., Olsson, O. & Bignert, A. (2006) Fish, seabirds and trophic cascades in the Baltic Sea. Marine Ecology Progress Series, 323, 233-238.

Österblom, H., Olsson, O., Blenckner, T. & Furness, R. W. (2008) Junk-food in marine ecosystems. Oikos, 117, 967-977.

Ottersen, G., Hjermann, D. O. & Stenseth, N. C. (2006) Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fisheries Oceanography, 15, 230-243.

Ottersen, G. & Stenseth, N. C. (2001) Atlantic climate governs oceanographic and ecological variability in the Barents Sea. Limnology and oceanography, 46,, 774-1780.

-P-

Parmesan, C. (2006) Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology and Systematics, 37, 637-669.

Parmesan, C. & Matthews, J. (2006) Biological impacts of climate change. In Principles of concervation biology (ed. Groom, M. J., Meffe, G. K., Carroll, C. R). pp. 333-360. Sinauer Associates, Inc, Sunderland.

Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W. J., Thomas, J. A. & Warren, M. (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579-583.

Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, T. J. (1998) Fishing down marine food webs. Science, 279, 860-863.

Pauly, D. (2007) The Sea Around US Project: Documenting and Communicating Global Fisheries Impacts on Marine Ecosystems. AMBIO: a Journal of the Human Environment, 63, 290-295.

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, T. J. (1998) Fishing down marine food webs. Science, 279, 860-863.

Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., Watson, R. & Zeller, D. (2002) Towards sustainability in world fisheries. Nature, 418, 689-695.

Pauly, D., Watson, R. & Alder, J. (2005) Global trends in world fisheries: impacts on marine ecosystems and food security. Philosophical Transactions of the Royal Society of London B, 360, 5-12.

Pearson, R. G. (2006) Climate change and the migration capacity of species. Trends in Ecology and Evolution, 21, 111-113.

Pearson, R. G. & Dawson, T. P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology & Biogeography, 12, 361-371.

Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. (2005) Climate Change and Distribution Shifts in Marine Fishes. Science, 308, 1912-1915.

Perry, R. I., Cury, P., Brander, K. M., Jennings, S., Möllmann, C. & Planque, B. (2010) Sensitivity of marine systems to climate and fishing: Concepts, issues and management responses. Journal of Marine Systems, 79, 427-435.

Peterson, A. T. (2001) Prediciting Specie's Geographic Distribution Based on Ecological Niche Modeling. The Condor, 103, 599-605.

Peterson, A. T. (2003) Predicting the geography of species' invasions via ecological niche modeling. The Quarterly review of Biology, 78, 419-433.

Peterson, A. T., Ortegua-Huerta, M. A., Bartley, J., Sanchez-Cordero, V., Soberon, J., Buddemeier, R. H. & Stockwell, D. R. B. (2002) Future projections for Mexican faunas under global climate change scenarios. Nature, 461, 626-629.

Peterson, A. T., Stewart, A., Mohamed, K. I. & Araújo, M. B. (2008) Shifting Global Invasive Potential of European Plants with Climate Change. Plos Ones, 3, 1-7.

Peterson, A. T., Vieglais, D. A. (2001) Predicting species invasions using ecological niche modelling: new approaches from bioinformatics attack a pressing problem. Bioscience, 51, 363-371.

Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.

Pikitch, E. K., Santora, C., Babcock, E. A., Bakun, A., Bonfil, R., Conover, D. O., Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., Houde, E. D., Link, J., Livingston, P. A., Mangel, M., McAllister, M. K., Pope, J. & Sainsbury, K. J. (2004) Ecosystem-based fishery management. Science, 305, 346-347.

Planque, B., Fromentin, J.-M., Cury, P., Drinkwater, K. F., Jennings, S., Perry, R. I. & Kifani, S. (2010) How does fishing alter marine populations and ecosystems sensitivity to climate? Journal of Marine Systems, 79, 403-417.

Poloczanska, E. S., Cook, R. M., Ruxton, G. D. & Wright, P. J. (2004) Fishing vs. natural recruitment variation in sandeels as a cause of seabird breeding failure at Shetland: a modelling approach. ICES Journal of Marine Science: Journal du Conseil, 61, 788-797.

Pörtner, H. O., Berdal, B., Blust, R., Brix, O., Colosimo, A., De Wachter, B., Giuliani, A., Johansen, T., Fischer, T., Knust, R., Lannig, G., Naevdal, G., Nedenes, A., Nyhammer, G., Sartoris, F. J., Serendero, I., Sirabella, P., Thorkildsen, S. & Zakhartsev, M. (2001) Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developinga hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Continental Shelf Research, 21, 1975-1997.

Pörtner, H. O. & Farrell, A. P. (2008) Physiology and climate change. Science, 322, 690-692.

Pörtner, H. O. & Knust, R. (2007) Climate Change Affects Marine Fishes Through the Oxygen Limitation of Thermal Tolerance. Science, 315, 95-97.

Poulsen, B. (2010) The variability of fisheries and fish populations prior to industrialized fishing: An appraisal of the historical evidence. Journal of Marine Systems, 79, 327-332.

Pulliam, R. H. (2000) On the relationship between niche and distribution. Ecology letters, 3, 12.

-Q-

Quero, J. C., Du Buit, M. H. & Vayne, J. J. (1998) Les observations de poissons tropcicaux et le réchauffement des eaux de l'Atlantique européen. Oceanologica Acta, 21, 345-351.

-R-

Reid, P. C. (2005) Atlantic wide regime shift? GLOBEC International Newsletter, 11, 9-10.

Reid, P. C., Borges, M. & Svenden, E. (2001) A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fisheries Research, 50, 163-171.

Reid, P. C., Edwards, M., Hunt, H. G. & Warner, A. J. (1998) Phytoplankton change in the North Atlantic. Nature, 391, 546.

Reygondeau, G. & Beaugrand, G. (In Press) Future climate-driven shifts in distribution of Calanus finmarchicus. GLobal Change Biology.

Reygondeau, G., Longhurst, A., Beaugrand, G., Martinez, E., Antoine, D., & Maury, O. (Soumis) Toward a dynamic biogeography.

Richardson, A. J. & Schoeman, D. S. (2004) Climate impact on plankton ecosystems in the northeast Atlantic. Science, 305, 1609-1612.

Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dumenil, L., Esch, M., Giorgetta, M., Schlese, U. & Schulzweida, U. (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate, edn. Max-Planck Institut für Meteorologie, 90 pp. Hamburg.

Roessig, J. M., Woodley, C. M., Cech, J. J., Hansen, J. & Hansen, L. J. (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Fish Biology and Fisheries, 14, 251-275.

Romano, M. D., Piatt, J. F. & Roby, D. D. (2006) Testing the Junk-food Hypothesis on Marine Birds: Effects of Prey Type on Growth and Development. Waterbirds, 29, 407-414.

Rombouts, I., Beaugrand, G., Dauvin, J-C. (En préparation) Re-distributions of commercially exploited benthic fauna from the English Channel simulated under climate change scenarios.

Root, T. L., Price, T. P., Hall, K. H., Schneider, S. H., Rosenzweig, C. & Pounds, J. A. (2003) Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.

Rose, G. A. (2004) Reconciling overfishing and climate change with stock dynamics of Atlantic cod (Gadus morhua) over 500 years. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1553-1557.

Rose, G. A. (2005) On distributional responses of North Atlantic fish to climate change. ICES Journal of Marine Science, 62, 1360-1374.

Rosen, D. A. S. & Trites, A. W. (2000) Pollock and the decline of Steller sea lions: testing the junk-food hypothesis. Canadian Journal of Zoology, 78, 1243-1250.

Rosenzweig, M. L. (1995) Species diversity in space and time, edn. Cambridge University Press, , pp. 137-178. Cambridge.

Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T. L., Estrella, N., Seguin, B., Tryjanowski, P., Liu, C., Rawlins, S. & Imeson, A. (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature, 453, 353-358.

Rothschild, B. J. (1998) Year class strengths of zooplankton in the North Sea and their relation to cod and herring abundance. Journal of Plankton Research, 20, 1721-1741.

Rothschild, B. J. & Shannon, L. J. (2004) Regime shifts and fishery management. Progress in Oceanography, 60, 397-402.

Rouyer, T., Fromentin, J. M., Ménard, F., Cazelles, B., Briand, K., Pianet, R., Planque, B. & Stenseth, N. C. (2008) Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. Proceedings of the National Academy of Sciences, 105, 5420-5425.

-S-

Sanchez-Cordero, V., Cirelli, V., Munguia, M. & Sarkar, S. (2005) Place prioritization for biodiversity representation using species' ecological niche modeling. Biodiversity Informatics, 2, 11-23.

Schmidt-Nielsen, K. (1990) Animal physiology: adaptation and environment, edn. Cambridge University Press, pp. 137-178. New York.

Schrope, M. (2008) Overfishing worse than thought. Nature News.

Schwartz, M. W., Iverson, L. R., Prasad, A. M., Matthews S. N. & O'connor, R. J. (2006) Prediction Extinctions, as a Result of Climate Change. Ecology, 87, 1611-1615.

Segurado, P., Araújo, M. B. & Kunin, W. E. (2006) Consequences of spatial autocorrelation for niche-based models. Journal of Applied Ecology, 43, 433-444.

Shealer, D. A. (2002) Foraging behaviour and food of seabirds. In Biology of marine birds (ed. E. A. Schreiber & J. Burger), pp. 137-178. Boca Raton: CRC Press.

Smith W. H. F. & Sandwell D. T. (1997) Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science, 277, 1956-1962.

Soberón, J. & Peterson, A. T. (2005) Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics, 2, 1-10.

Speirs, D. C., Gurney W. S. C., Heath M. R., Horbelt, W., Wood, S. N. & De Cuevas, B. A. (2006) Ocean-scale modelling of the distribution, abundance, and seasonal dynamics of the copepod Calanus finmarchicus. Marine Ecology Progress Series, 313, 173-192.

Stebbing, A. R. D., Turk, S. M. T., Wheeler, A. & Clarke, K. R. (2002) Immigration of southern fish species to south-west England linked to warming of the North-Atlantic (1960-2001). Journal of the Marine Biological Association of the United Kingdom, 82, 177-180.

Steele, J. H. & Henderson, E. W. (1984) Modeling Long-Term Fluctuations in Fish Stocks. Science, 224, 985-987.

Stempniewicz, L., Blachowiak-Samolyk, K. & Weslawski, J. M. (2007) Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem--A scenario. Deep-Sea Research, 54, 2934-2945.

Stige, L. C., Ottersen, G., Brander, K. M., Chan, K.-S. & Stenseth, N. C. (2006) Cod and climate: effect of the North Atlantic Oscillation on recruitment in the North Atlantic. Marine Ecology Progress Series, 325, 227-241

Stige, L. C., Ottersen, G., Dalpadado, P., Chan, K.-S., Hjermann, D. Ø., Lajus, D. L., Yaragina, N. A. & Stenseth, N. C. (2010) Direct and indirect climate forcing in a multi-species marine system. Proceedings of the Royal Society B: Biological Sciences, 277, 3411-3420.

Stockwell, D. R. B., Beach, J. H., Stewart, A., Vorontsov, G., Vieglais, D. & Pereira, R. S. (2006) The use of the GARP genetic algorithm and Internet grid computing in the Lifemapper world atlas of species biodiversity. Ecological Modelling, 195, 139-145.

Stockwell, D. R. B. & Noble, I. R. (1992) Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Math. Comput. Simul., 33, 385-390.

Stockwell, D. R. B. & Peters, D. (1999) The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13, 143-158.

Stockwell, D. R. B. & Peterson, A. T. (2002) Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148, 1-13.

Stockwell, D. & Peterson, A. T. (2003) Comparison of resolution of methods used in mapping biodiversity patterns from point-occurrence data. Ecological Indicators, 3, 213-221.

Sundby, S. (2000) Recruitment of Atlantic cod stocks in relation to temperature and advection of copepod populations. Sarsia, 85, 277-298.

-T-

Tåning, A. V. (1948) On changes in the marine fauna of the North-NWestern Atlantic Area, with special reference to Greenland. ICES Rapports et Procès-Verbaux des Réunions, 25, 26-29.

Thomas, C. D. & Lennon, J. J. (1999) Birds extend their ranges northwards. Nature, 399, 213.

Thuiller, W. (2003) BIOMOD - optimizing predictions of species distributions and projecting potential future shifts under global change. GLobal Change Biology, 9, 1353-1362.

Thuiller, W. (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography, 27, 165-172.

Thuiller, W. (2007) Climate change and the ecologist. Nature, 448, 550-552.

Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G. F., Paterson, J., Schurr, F. M., Sykes, M. T. & Zimmermann, N. E. (2008) Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution, Systematics, 9, 137-152.

Thuiller, W., Araújjo, M. B., Lavorel, S. & Kenkel, N. (2003a) Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14, 669-680.

Thuiller, W., Vayreda, J., Pino, J., Sabate, S., Lavorel, S. & Gracia, C. (2003) Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Global Ecology and Biogeography, 12, 313-325.

Trenberth, K. E. (1997). The Definition of El Niño. Bulletin of the American Meteorological Society, 78, 2771-2777.

-U-

-V-

Van Damme, C. J. G. & Couperus, A. S. (2008) Mass occurrence of snake pipefish in the Northeast Atlantic: Result of a change in climate? Journal of Sea Research, 60, 117-125.

Veit, R. R., Pyle, P. & McGowan, J. A. (1996) Ocean warming and long-term change in pelagic bird abundance within the California current system. Marine Ecology Progress Series, 139, 11-18.

-W-

Walther, G. R., Berger, S. & Sykes, M. T. (2005) An ecological `footprint' of climate change. Proceedings of the Royal Society of London, B, 272, 1427.

Wanless, S. (2007) Climate change and north-east Atlantic seabirds. Journal of Ornithology, 148, 155-159.

Wanless, S., Frederiksen, M., Daunt, F., Scott, B. E. & Harris, M. P. (2007) Black-legged kittiwakes as indicators of environmental change in the North Sea: Evidence from long-term studies. Progress in Oceanography, 72, 30-38.

Wanless, S., Harris, M. P., Redman, P. & Speakman, J. R. (2005) Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Marine Ecology Progress Series, 294, 1-8.

Weijerman, M., Lindeboom, H. & Zuur, A. F. (2005) Regime shifts in marine ecosystems of the North Sea and Wadden. Sea. Marine Ecology Progress Series, 298, 21-39.

Whitfield, J. (2008) Marine mammals: Does 'Junk Food' Threaten Marine Predators in Northern Seas? Science, 322, 1786-1787.

Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. (2009) Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106, 19729-19736.

Woodruff, S., Slutz, R., Jenne, R. & Steurer P (1987) A comprehensive ocean-atmosphere dataset. Bulletin of the American meteorology society, 68, 1239-1250.

Worm, B., Sandow, M., Oschlies, A., Lotze, H. K. & Myers, R. A. (2005) Global Patterns of Predator Diversity in the Open Oceans. Science.

Wynn, R. B., Josey, S. A., Martin, A. P., Johns, D. G. & Yésou, P. (2007) Climate-driven range expansion of a critically endangered top predator in northeast Atlantic waters. Biology Letters, 3, 529-532.

-X-

-Y-

Yésou, P. (2003) Recent changes in the summer distribution of the Balearic shearwater Puffinus mauretanicus off western France. Scientia Marina, 67, 143-148.

Résumé

Cette thèse doctorale, réalisée dans le cadre d'un partenariat avec des professionnels de la pêche, a pour objet l'étude de l'impact du réchauffement climatique sur la distribution spatiale des poissons en Atlantique Nord, à l'aide de l'application d'un nouveau modèle d'habitat appelé le Non-Parametric Probabilistic Ecological Niche Model (NPPEN). Le modèle NPPEN est non-paramétrique et basé sur le concept de niche écologique (sensu Hutchinson). Le modèle ne requiert que des données de présence. Il est donc bien adapté à l'étude à macro-échelle de la biogéographie des espèces marines Le modèle NPPEN teste la distance généralisée de Mahalanobis par un test non-paramétrique de permutations afin de produire et de cartographier les probabilités de présence des espèces. L'application de ce nouveau modèle, sur plus de cinquante espèces marines en Atlantique Nord, a mis en évidence l'impact du réchauffement climatique sur la biogéographie des espèces et sur la structure et la trophodynamique de l'écosystème marin. Des bouleversements, déjà observés dans la distribution spatiale et l'abondance (probabilités de présence) d'espèces de poissons, tels la morue de l'Atlantique ou le lançon nordique, ont été retrouvés. En majorité, les espèces vont effectuer un déplacement dirigé vers le nord, pour rester dans un environnement conforme à leur niche écologique. L'intensité et la vitesse des mouvements biogéographiques attendus, de même que le bilan des gains ou pertes d'aires de répartition spatiale diffèrent selon les poissons ; régis par les capacités de déplacements des espèces, leur domaine de tolérance environnementale (largeur de leur niche) et l'intensité du réchauffement climatique. En mer du Nord, des espèces comme le lieu jaune, à la niche écologique étroite et aux exigences strictes, risquent de disparaitre suite à la contraction de leur aire de répartition. D'autres espèces, plus adaptées verront leur abondance augmentée ou/et leur limite supérieure de distribution repoussée au nord, tel l'entélure. Ces changements altérèrent le fonctionnement du réseau trophique en modifiant la disponibilité et la qualité des ressources en poissons pour les consommateurs supérieurs comme les oiseaux marins, participant ainsi à la réduction de leur succès de reproduction. Les poissons eux-mêmes, comme la morue de l'Atlantique, sont affectés par les modifications biogéographiques induites par le réchauffement climatique, de leurs proies zooplanctoniques Calanus finmarchicus. Ces bouleversements trophiques et biogéographiques sont d'autant plus prononcés que l'espèce concernée se trouve en limite de sa niché écologique.

L'utilisation du nouveau modèle d'habitat NPPEN fournit des informations essentielles, à considérer pour anticiper les changements des ressources marines, notamment dans le cadre de plans de gestion des stocks de poissons exploités.

Abstract

This aims to study the impact of climate warming on the spatial distribution of fish in the North Atlantic, using the new habitat model called the Non-Parametric Probabilistic Ecological Niche Model (NPPEN). The model NPPEN is nonparametric and requires only presence data. It is based on concept of the ecological niche sensu Hutchinson. The model NPPEN tests the Mahalanobis generalised distance by permutations to produce and map the probability of species occurrence. The model is therefore well suited to study expected changes in the biogeography of marine species at macro-scale. Applying this new model on more than fifty marine species in the North Atlantic, has highlighted the impact of global warming on the biogeography of species, structure and trophodynamic of the marine ecosystem. Disruption, already observed in spatial distribution and abundance (probability of occurrence) of fish species such as Atlantic cod and lesser sandeel were found again. The majority of species will move northward to stay in an environment consistent with their ecological niche. The intensity and rapidity of the biogeographic movements expected, as the balance of gains or losses in the spatial range differ among fish; governed by the ability of species movement, their range of environmental tolerance (niche breadth) and the intensity of global warming. In the North Sea, species such as pollack, with tight and strict requirements ecological niche, may disappear following the contraction of their niche. The abundance of more adapted species, as the snake pipefish, has increased and their upper limit of distribution extended northward. These changes alter the functioning of the food web by changing the availability and quality of fish resources to upper level consumers as seabirds, reducing their reproductive success. The fish themselves, such as Atlantic cod, are affected by biogeographic changes, induced by global warming, in their zooplanktonic prey, Calanus finmarchicus. These trophic and biogeographic changes are more pronounced when the species is at the limit of its ecological niche.

The new model NPPEN habitat provides essential information to consider in order anticipating changes in marine resources, particularly in the context of management plans for exploited fish stocks.

* 4 Rombouts, I., Beaugrand, G. Dauvin, J. C. Re-distributions of commercially exploited benthic fauna from the English Channel simulated under climate change scenarios. En préparation

* 5 Reygondeau G, Longhurst A, Beaugrand G, Martinez E, Antoine D and Maury O, (soumis) Toward a dynamic biogeography

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Nous devons apprendre à vivre ensemble comme des frères sinon nous allons mourir tous ensemble comme des idiots"   Martin Luther King