WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Existence et comportement asymptotique des solutions d'une équation de viscoélasticité non linéaire de type hyperbolique

( Télécharger le fichier original )
par Khaled ZENNIR
Université Badji Mokhtar Algérie - Magister en Mathématiques 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

3.2 Decay of Solutions

We can now state the asymptotic behavior of the solution of (P).

Theorem 3.2.1 Suppose that (G1) , (G2) and (2.3) hold. Assume further that u0 2 W and ui 2 110 (Q) satisfying (3.12) . Then the global solution satisfies

E(t) < E (0) exp (--At) , Vt > 0 if m = 2, (3.25)

or

E(t) < (E(0)' + Kort)3 , Vt > 0 if m > 2, (3.26)

where A and K0 are constants independent of t, r = m 1 and s =

2

2 2 -- m.

The following Lemma will play a decisive role in the proof of our result. The proof of this lemma was given in Nakao [34].

Lemma 3.2.1 ( [37]) Let cp(t) be a nonincreasing and nonnegative function defined on [0, T] , T > 1, satisfying

cpl#177;r(t) < k( (cp (t) -- cp (t + 1)) , t 2 [0, T] ,

for ko > 1 and r > 0. Then we have, for each t 2 [0, T] ,

cp (t) < cp (0) exp (--k [t -- 1]+) , r = 0

c° (t) ~{c (0)--r + k0r [t -- 1]+1

{

_1

r ,r > 0

,

(3.27)

where [t -- 1]+ = max ft -- 1,0} , and k = ln ( k0 k0 1 1) .

Proof of Theorem 3.2.1.

Multiplying the first equation in (P), by ut and integrate over ft to obtain d dt E (t) + w 11out 122 + a Mud 2 : = (g' 2

Vu) (t) -- g (t) 11V u(t)1122

Then, integrate the last equality over [t, t + 1] to get

t+1 t+1

E(t 1) -- E(t) + w kbut122 ds + a Mud: ds

t t

=

t+1

t

1 (g' 0 V u) (s)ds --

2

t+1

2g(s) 1Vu(t) 1 2ds

t

Therefore,

1

E(t) -- E(t 1) = fim(t) -- 2

1

(g' o VU) (s)ds +

2

t+1

g(t) 1Vu(t)k22 ds, (3.28)

t

t+1

t

where

t+1 t+1

Fm(t) = a Mud: ds w 1Vutk22 ds (3.29)

t t

Using Poincaré's inequality to find

t+1 t+1

Iutk22 ds < C (12) Mutem ds (3.30)

t t

Exploiting Holder's inequality, we obtain

0 1

Zt + 1

kutk2 m ds ~ @ ds A

t

m-2

m 0

@

1

2

~kutk2 m A

m

t+1

t

t+1

t

2
m

ds

0

~ @

t+1

t

1

2

~kutk2 m A

m

2
m

ds. (3.31)

Combining (3.29), (3.30), and (3.31), we obtain, for a constant C1, depending on ~

t+1

Iutk22 ds < F2(t), C1 > 0. (3.32)

t

~ ~

By applying the mean value theorem, ( Theorem 1.3.3. in chapter1), we get for some t1 2 t; t + 1 ;

4

~ ~

t + 3

t2 2 4; t + 1

Ilut(ti)112 < 2c (n)

1

2 F(t), = 1, 2. (3.33)

Hence, by (G2) and since

t+1

1Vut122 ds < C2F (t)2, C2 > 0 (3.34)

t

1 3

, there exist t1 2 [t' 4 t + 1 , 4 t2 2 [t + t + 11 such that

11Vut(ti)1122 < 4C (Q)F(t)2, i = 1, 2. (3.35)

Zt 2

tl

Next, we multiply the first equation in (P) by u and integrate over Q x [t1, t2] to obtain

2 0 1 3

Zt

4 @1 ~ g(~)d~ A kru(t)k2 2 ds ~ b kukp 5 ds

0

p

= ~

Zt 2

tl

I

u.uttdxds -- w

Zt 2

tl

I

Vu.Vutdxds -- a

Zt 2

tl

Z

u: jutjm-2utdxds

t2

+f

tl

Zs

0

g(s -T) I

Vu(s). [Vu(T) -- Vu(s)] dxdrds.

Obviously,

t 2

Z

tl

I(s)ds = --

Zt 2

tl

Z

u.uttdxds -- w

Zt2

tl

Z

Vu.Vutdxds -- a

Zt 2

tl

Z

u.lutr-2 utdxds

t 2

+ f

tl

Zs

0

g(s -T) I

Vu(s). [Vu(T) -- Vu(s)] dxdrds

~~~~~~

=

~~~~~~

u.uttdxds

~~~Zt2

~~~

tl

I

2 3

Z Zt 2 Z

4 utudx 5 ~ utdxds

t2

~ t1 t1 ~

=

~~~~~~

Z

ut(t2)u(t2)dx -- I ut(ti)u(ti)dx --

Zt 2

tl

kutk2 2ds

~~~~~~

;

t 2

+ f (g o Vu) (s)ds. (3.36)

tl

Note that by integrating by parts, to obtain

Using Hölder's and Poincaré's inequalities, we get

~~~~~~

2

Z

u.uttdxds

< C2 ~

X
i=i

~~~Zt 2

~~~

tl

1Vutk22 dt. (3.37)

Iout(ti)12 Ilvu(ti)112 + C2 ~ Zt2

tl

By using Hölder's inequality once again, we have

~~~Zt 2

~~~

tl

I

Vu.Vutdxds

~~~~~~

t2

I~

tl

1V7k2 1Vuth ds (3.38)

 

Furthermore, by (3.35) and (3.16), we have

1 1

kVtt(ti)12 1Vt(ti)12 < C3 (C(Q)) 2 F(t) sup E(s) 2 ; (3.39)

h<s<t2

where, C3 = 2 (1 (p 2--p 2))

1

2

:

From (3.34) we have by Hölder's inequality

Zt 2

tl

1V7k2 1Vuth dt <

Zt 2

tl

E(s)

1 ~ 2p ~~

1

2

l p ~ 2

1

2

11VUt112 ds

 

< 1 2C3 sup E(s) ti<8<t2

1

2

Zt 2

tl

1Vuth ds,

 

which implies

1

1

2

1 krutk2 2 dt A

0

11Vut112 dt < @1dt

Zt2

tl

t1

1

A

t2

2 0

@

Zt 2

tl

Then,

~~~Zt 2

~~~

tl

Z

u.uttdxds

~~~~~~

< 2C2~C3F(t) sup

h<s<t2

1

E(s) 2 + C!C2F(t)2. (3.41)

 

-- 2

N/3C2 F(t).

C3 3C2

where C4 =

4

1

E(s) 2 (3.40)

Zt 2

tl

1Vu12 1Vuth dt < C4F(t) sup

h<s<t2

 

. Therefore (3.37) , becomes

We then exploit Young's inequality to estimate

Zt 2

,

I i

st 0

 

g(s - r)Vu(t). [Vu(s) - Vu(t)1 drdxdt

(3.42)

< 8

Zt 2

h

t

I

0

g(s - 7-)11Vu1122c/rdt+ 416.

,

I

h

(g o Vu) (t)dt, VS > 0.

 

Now, the third term in the right-hand side of (3.36), can be estimated as follows

Zt 2

h

t 2

f 17/11m-2 ut.udxds

< I

~ tl

I

lutlm-1 . lul dads.

 

By Holder's inequality, we find

Zt 2

h

I

lutrn-1 . lul dxds <

Zt 2

h

2
664

0 1

Z

@jutjm dx A ~

m1

m 0 1
Z @ jujm dx A ~

3 1

m 5 7 7

ds

 

kutk

=

Zt 2

h

m~1 m ll'allm ds.

By Sobolev-Poincare's inequality, we have

,

I

ti

kutkm~1 m Mullm ds < C(S2)

Zt 2

ti

kutkm~1 m 1Vu12 ds,

 

for 2 < m ~ 2n n - 2

if n > 3, or 2 < m < 1 if n = 1, 2.

 

Using Holder's inequality, and since ti, t2 2 [t, t + 1] and E(t) decreasing in time, we conclude from the last inequality, (3.16) and (3.29) , that

,

I

ti.

Ilut1C-1 Mullm ds < C (Q) (l (p 2--p 2))

1

2

Zt 2

ti.

Ilut1C-1 (J (u))I2 - ds

 

< C (Q) (l (p 2! 2))

1

2

Zt 2

ti

1

Ilut1C-1 (E(u))2 ds

 

1

< C (Q) (l (p 2! 2))

2

 

(E(u))

1

 

sup

h<8<t2

2 x

0 Zt2

@t1

1 kutkm m ds A

m-1

0 Zt 2

@t1

1

ds A

1

M

 
 

(3.43)

m-1 1

( 1a )

M

C (Q) sup

h<8<t2

(E(t))

21 ( 2p ) l (p -- 2))

2

F (t)m-1

Then, taking into account (3.41) -- (3.43), estimate (3.36) takes the form

Zt 2

ti.

1

I(t)dt < (2C! + 3C2 w) C3F(t) sup E(s)2 + C:C2F(t)2

4 ti <8<t2

2 C3C (Q) sup (E(t))

1

2 F(t)m-1

1

M

a

+

h<8<t2

(3.44)

+8

,

I

ti

t

I

0

g(t -- s) 11V u112 dsdt + (1 48 + 1)

,

I

h

(g 0 Vu) (t)dt.

Moreover, from (3.4) and (3.10), we see that

E(t) = 2 kutk2

1 2 dt + J(t)

t

=

2 2p

1 Ilutg + (p 2) 1 -- I g(s)ds) 11V u112

0

(3.45)

1p 2p-- 2 \

+ ) (g 0 Vu) (t) + 1 I (t).

By integrating (3.45) over [t1, t2] , we obtain

,

I

,

E(t)dt = 1

2

Zt 2

h

11utg dt + 132p2/

,

I

,

0

@1 --

t

I

0

1 g(s)ds A 11Vu1122 dt

 

+ (p -- 2)

2p

Zt 2

,

(g o Vu)(t)dt + 1

P

Zt 2

,

I(t)dt, (3.46)

 

which implies by exploiting (3.32)

t 2

I

.

E(t)dt < c 1 (F (t))2 +

2 1

P

Zt 2

,

/(t)dt + (P -- 2)

2p

Zt 2

,

(g o Vu) (t)dt

 

(3.47)

+ (p -- 2)

2p

Zt 2

h

0

@1 --

t

I

0

1

g(s)ds A 11Vu1122 dt.

 

By using (3.11), Lemma 3.1.5, we see that

0

@1 --

t

I

0

 

)

g(s)ds 11V ug < 11(t). (3.48)

71

Therefore, (3.47), takes the form

t 2

I

Q)(

E(t)dt < C 2 (F(t))2 + (P -- 2)

2p

,

I

,

(g o Vu) (t)dt

 

+ (1 + p -- 2) .75, 2pii )

Zt 2

,

I(t)dt. (3.49)

 

Again an integration of (3.14) over [s, t2] , s E [0, t2] gives

E(s) = E(t2) + a

Zt 2

8

1

11ut(t)11: dr + 2

,

I

8

g(T) 11Vu(t)1122 dr

 

--

1

2

Zt 2

8

(g o Vu) (t)dr + w

Zt 2

8

11Vut(t)1122 dr (3.50)

 

Zt 2

,

E(s)ds >

t 2

I

1

E(t2)ds > 2E(t2)
· (3.51)

 

1

'

By using the fact that t2 -- ti > 2 we have

The fourth term in (3.44), can be handled as

t

I

0

g(t -- s) 1Vu122 ds = 1Vu122

t

I

0

g(t -- s)ds

 

(3.52)

< 2p (1 -- l) E (t). -- l (p -- 2)

Thus,

t2

I

t1

t

I

0

g(t -- s) 1Vuk22 dsdt < 2p (1 ~ l)

l (p -- 2)

t2

I

t1

E(t)dt

 

p (1 ~ l)

~ l (p -- 2)E(ti)

~ p (1 ~ l) l (p -- 2)E(t). (3.53)

Hence, by (3.53) , we obtain from (3.44)

t2

I

t1

1

I(t)dt < ( 20, + 3C2w) C3F(t) sup E(s)2 + C!C2F(t)2

4 ti<8<t2

2 C3C (Q) sup (E(t))

1

2 F(t)m-1

1

m

a

+

ti<8<t2

E(t) + ( 1 + 1)

+8 l (p -- 2) 48

t2

I

t1

(g o Vu) (t)dt. (3.54)

 

E(t) < 2

t2

I

t1

E(s)ds + a

t + 1

I

t

1

Iut(t)1mm dr + 2

t + 1

I

t

g(r) 1Vu(t)k22 dr

 

~

1

2

t + 1

I

t

(g' o Vu) (t)dr + w

t + 1

I

t

1Vut(t)k22 dr. (3.55)

 

From (3.50) and (3.51) we have

Obviously, (3.49) and (3.55) give us

( c (Q) )

f /(t)dt E(t) < 2 (F(t))2 + (P 2 2 ) t 2 t 2

I (g ° Vu) (t)dt + (1 + p -- 2)

2 p 2pn

tl tl

+a

Zt 2

,

1

kut(t)km m dt +

2

,

I

,

g (t) 11V u(t)g dt -- 12

,

I

,

(g' o Vu) (t)dt

 

Zt 2

,

+w

1Vut(t)k22 dt.

Consequently, plugging the estimate (3.54) into the above estimate, we conclude

E(t) < C (Q) (F(t))2 + (P 2)

P

,

I

,

(g o Vu) (t)dt

 

.V3C2 1

+2 11 + P-- 2) [(2C: + 4 w) C3F(t) sup E(s) 2 + C!C2F(t)21

P 2pn ti<8<t2

+

(1 + P 2) am1 C3C (Q) sup (E(t)) 2 F(t)m-1 p 2pi
t

i

<

8

<t2

+2 (1 p + 2pn p -- 2) [Sp1 (p -- 2) E (t) + (4S + 1 ) I (g 0 V u) (t)dt)1

1

l

t

t2

(3.56)

+Fm(t) -- 1

2

,

I

,

(g' o Vu) (t)dt + 2

,

I

,

g (t) 11V u(t)g dt.

 

We also have, by the Poincaré's inequality

I I u(s) I I 2 < C I I vu(s)II2

1

< C (1 (p --p 2))

2

E(t)

1

2

, (3.57)

 

Choosing 8 small enough so that

1 -- 2 (1 + p -- 2) Sp (1 -- 1)

(3.58)

p 2pi 1 (p -- 2) > 0'

we deduce, from (3.56) that there exists K > 0 such that

E(t) < K [ F(t)2 + E(t) 2 F(t) + E(t) 2 F(t)m-1 + F(t)m]

+

1

2

t + 1

I

t

g(s) 1Vu(s)k22 ds -- 1

2

t + 1

I

t

(g' o Vu) (s)ds

 

(3.59)

#177;[(p ;2) #177; 2 ( 15. #177; 0 (p i_ #177; p 2-13712)1

t + 1

I

t

(g o Vu) (s)ds

 

,

I

,

Using (G2) again we can write

,

I

,

(g o Vu) (t)dt < --

 

(g' 0 Vu) (t)dt, > 0.

Then, we obtain, from (3.59),

1 1 ,

E(t) < K [ F(t)2 + E(t) 2 F(t) + E(t) 2 F(t)m-1 + F(t)m]

(3.60)

g(s)11Vu(s)gds -- ( 6+ 2)

1

+ 2

t + 1

I

t

t + 1

I

t

(g' o Vu) (s)ds.

where 6. = [(p ;2) + 2 (.731 #177; p 2p--n) ( 45+ 1 )J

An appropriate use of Young's inequality in (3.60), we can find K1 > 0 such that

E(t) < K1 [F(t)2 + F(t)2(m-1) + F(t)m] (3.61)

g(s)11Vu(s)gds -- ( 6+ 2)

3

(g' o Vu) (s)ds 5 ,

t + 1

I

t

t + 1

I

t

[

1

2

for K1 a positive constant.

Using (G2) again to get

E(t) < K1 [F(t)2 + F(t)2(m-1) + F(t)m]

+ [ (1 + 2 f

g (s) 11V u(s) g ds -- (61 + 2)

t + 1

I

t

t+ 1

I

t

(g' o Vu) (s)ds

< K1 [F(t)2 + F(t)2(m-1) + F(t)m]

(3.62)

t + 1 t + 1

+ (1 + gi)

[2

1 I

I g(s) 11V u(s)112 2 2 ds -- (g' o Vu) (s)ds

t t

At this end we distinguish two cases:

Case 1. m = 2. In this case we use (3.28) and (3.62), we can find K2 > 0 such that

E(t) < K1 F(t)2

t+ 1 t + 1

+ (1 + gi)

[2

I g(s) 11V u(s)112 ds -- 2 II (g' o Vu) (s)ds

t 1

t

< K2 [E(t) -- E(t + 1)] . (3.63)

Since E(t) is nonincreasing and nonnegative function, an application of Lemma 3.2.1 yields

E(t) < K2 [E(t) -- E(t + 1)] , t > 0, (3.64)

which implies that

E(t) < E (0) exp (--A [t -- 1]1 , on [0, oo) , (3.65)

where A = ln

K2 -- 1

( K2

Case 2. m > 2. In this case we, again use (3.28) and (3.62) to arrive at

2

m

. (3.66)

t + 1 t+ 1t t

F(t)2 = (E(t) -- E(t + 1)) -- 2 1 I g(s) 11V u(s) g ds + 21 I (g' o Vu) (s)ds

m

2 < 2

We then use the algebraic inequality

(a + b)

m ( m m

2 a2 + b2), m > 2. (3.67)

To infer from (3.62), and by using (3.67), that

[E(t)]

m [1 + F (t)2(m_2) + F (t)m_2]

2 < K3

m

2 F(t)m

 

 

m

2 (1 + 21)

m

2

4

ft + 1

1 g(s) MVu(s)M2 2 ds _ 1

2 2

t

Zt + 1

t

3

(g' o Vu) (s)ds 5

m
2

+2

 
 
 

[1 + F (t)2(m_2) + F (t)m_2]m

< K3 2 x [E(t) - E(t + 1)]

(3.68)

 

m

2 (1 + 21)

m

2

4

ft + 1

1 g(s) MVu(s)M2 2 ds _ 1

2 2

t

Zt + 1

t

3

(g' o Vu) (s)ds 5

m
2

+2

 
 
 

m

where K3 = 2

2 K1. We use (3.28) to obtain

 

0
@

1

2

Zt + 1

t

g(s) VuM2 2 ds - 1

2

Zt + 1

t

1 (g' o Vu) (s)ds A

m
2

 

m

< (E(t) - E(t + 1))

A combination of (3.68), (3.69) yields

2 (3.69)

 

[E(t)]

m 2 < K3 [1 + F(t)2(m_2) + F(t)m_2]

m

2 x (E(t) - E(t + 1))

 

+2

m

2 (1 + 21)

m

2 [E(t) -- E(t + 1)]

m 2 -1 [E(t) - E(t + 1)]

 

[ ]

m m m

< K3 [1 + F (t)2(m_2) + F (t)m_2]m 2 + 2 2 ~1

2 (1 + 21) 2 [E(t) - E(t + 1)] x

[E(t) - E(t + 1)] (3.70)

By using (3.62), the estimate (3.70) takes the form

[E(t)]

m

2 <

{ m m m m

K32m [1 + E(0)(m_2) + (E(0)) 2 ~1i 2 _1}

+ 2 2 (1 + 21) 2 (E(0)) ~

 

(E(t) - E(t + 1))

< K0 (E(t) - E(t + 1)). (3.71)

Again, using Lemma 3.2.1, we conclude

E(t) < [E(0)_r + K0r [t -- 11+18 , (3.72)

Tn

with r =

2

2

1 > 0, s = and K0 is some given positive constant.

2 -- n-i

This completes the proof.

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Entre deux mots il faut choisir le moindre"   Paul Valery