WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Existence et comportement asymptotique des solutions d'une équation de viscoélasticité non linéaire de type hyperbolique

( Télécharger le fichier original )
par Khaled ZENNIR
Université Badji Mokhtar Algérie - Magister en Mathématiques 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Chapter 4

Exponential Growth

Abstract

f

00 g(s)ds < p -- 2

p -- 1, by

0

Our goal in this chapter is to prove that when the initial energy is negative and p > m, then, the

solution with the Lu--norm g

rows as an exponential function provided that

 

using carefully the arguments of the method used in [16], with necessary modification imposed by the nature of our problem.

4.1 Growth result

Our result reads as follows.

Theorem 4.1.1 Suppose that m > 2 and m < p < oo, if n = 1,2, m < p < 2 (n -- 1) if n > 3.

n -- 2 --

p -- 2

00

holds. Then the unique local solution of problem

Assume further that E(0) < 0 and f g(s)ds <

0 p --1

(P) grows exponentially.

Proof. We set

H(t) = --E(t). (4.1)

By multiplying the first equations in (P) by --ut, integrating over Q and using Lemma 2.1.3, we obtain

t

8

<

:

d

~ dt

0 1 9

Z =

2 kutk2

1 2 + 1 @1 ~ 2 + 1

g(s)ds A kruk2 2 (g ~ ru) (t) ~ p b kukp p

2 ;

0

1

1

= a IlutIC -- 2 (g' o Vu)(t) + 2 g(t) 11V ug + w rout g .

(4.2)

By the definition of H(t), (4.2) rewritten as

1

H'(t) = a Mutrm -- 2 2 (g' o Vu) (t) + 1 g (t) 11V 7422 + w 1out122 > 0, Vt > 0. (4.3)

Consequently, E(0) < 0, we have

1 2 + b

H(0) = ~2 ku1k2 2 ~ 2 1 kru0k2 pMucep > 0. (4.4)

It's clear that by (4.1), we have

H(0) < H(t), Vt > 0. (4.5)

Using (G2) , to get

H(t) -- b

p

One implies

2 0 1 3

Zt

kukp 41

p = ~ 2 kutk2 2 + 1 @1 ~ g(s)ds A kruk2 2 + 2 1 (g ~ ru) (t) 5

2

0

< 0, Vt > 0. (4.6)

0 < H(0) < H(t) < b

p

IulPp . (4.7)

 

Let us define the functional

L(t) = H(t) + E./

n

ii ii 2

utudx + E 2 w IIVu112 . (4.8)

 

for E small to be chosen later.

By taking the time derivative of (4.8) , we obtain

L'(t) = H'(t) + E./

n

uutt (t, x)dx + F E 1lutg + Ew I

SI

VutVudx

 

= [wIlVutg + a IlutImm - 2 (g' o Vu) (t) + 12g(t) 11V ug]

+E 1lutg + Ew I

n

Using the first equations in (P), to obtain

VutVudx + E I

n

uttudx. (4.9)

 

Iuuttdx = bllurp HIV ug - col

~

VutVudx - a f

n

1ut1m-2 utudx

 

+I

n

Vu

t

I

0

 

g(t - s)Vu(s, x)dsdx. (4.10)

Inserting (4.10) into (4.9) to get

1

L'(t) = wIlVutg + a MutErmi -2 (g' o Vu) (t) + 1 2g(t)1Vuk22

+ E Iutl22 --E 1Vuk22 + E

t

I

0

g(t - s) f Vu.Vu(s)dxds

 

+ EbIlurp - Ea I

n

lutrm-2 utudx. (4.11)

 

By using (G2) , the last equality takes the form

L'(t) > w 1Vutk22 + a Iutrmm + E Iutk22 -E 1Vuk22 +EbIlurp

(4.12)

+E

t

I

0

g(t - s) f Vu.Vu(s)dxds - Ea f

~ n

lutrm-2 utudo-.

 

To estimate the last term in the right-hand side of (4.12) , we use the following Young's inequality

r

XY <

r

Xr + 8-q

q

Y q, X, Y > 0, (4.13)

 

for all 8 > 0 be chosen later, 1

r

So we have

+

1

q

m

= 1, with r = m and q = m _ 1.

 

I

lutrn-2 utudx <

I

n

lutrn-1 lul dx

 

MuM: + (mm 1) 8(m71) IlutIC , Vt > 0. (4.14)

8m

<

m

Therefore, the estimate (4.12) takes the form

L'(t) > w 11Vut1122+ a Ilutr,,+E Mut1122 -E 11Vu1122+EbIlurp

t

I

0

+ E

g(t - s) I Vu.Vu(s)dxds

E8m
a

m

Murni Ea (m m 1) 8(mini) 11u4117,

> w Ivutk22 + a IlutIC + E Iutk22 -- E 1Vuk22 + Eb 1uk1p

+ E r uk22

t

I

0

g(s)ds + E

t

I

0

g(t - s) I Vu (t) [Vu (s) - Vu (t)] dxds

8

Ealn

m

NC Ea (m m1) 8(mm) IlutIC . (4.15)

Using Cauchy-Schwarz and Young's inequalities to obtain

L' (t) > w 11V utg + a ( 1 - E ( 7 1 77-11) gmln1)) IlutIC + E 1lutg

E 1Vuk22 + Eb bun + E r uk22

t

I

0

g(s)ds

 

t

I

0

E

Mull:

g(t - s) 11V u112 11V u(s) - Vu (t)112 ds -- Earl

m

> w 11V utg + a ( 1 -E (m m1) gmln1)) 11utrni + E Ilutg + Eb Ng

(4.16)

0

+ E @

1

2

t

I

0

)g(s)ds -1 11V ug - E2 (g o V u(t) - Ea: Mull: .

 

Using assumptions to substitute for b Ilurp . Hence, (4.16) becomes

L'(t) > w IlVut112 + a ( 1 -- E (M m1) 8( min1)) Mud: + EllUt112

-FE (311(t) #177; 2 Ilutg + 2 (g 0 Vu) (t) + P2 1 -- I g(s)ds 11Vug

0t

1

2

-FE

t

I

0

)

m

g(s)ds --1 11Vug -- E2 (g o Vu(t) --gam Mull: .

> w 11Vutg + a ( 1 --E (m m -- 1) 8( 7/7-)11 )) 11utr,,+ E (1 + 2) 1lUtg

(4.17)

+EallIVug + Ea2(9 0 Vu(t) -- Eari Murrni + €pH(t).

m

(1 --

f g(s)ds #177; ( P

where al = ) > 0, a2 = P 1 > 0.

0

2 p ) 22 2

In order to undervalue L'(t) with terms of E(t) and since p > m, we have from the embedding LP (Q) c-- Lm (Q) ,

m

Murrni < C Ilugn, < C (Ilurp) P , Vt > 0. (4.18)

for some positive constant C depending on Q only. Since 0 < m

P

< 1, we use the algebraic inequality

 

Zk < (Z #177; 1) < ( 1 #177; 1 ) (Z #177; W) , V Z > 0, 0 < k <1, w > 0, w

to find

m

(Mull;)

P < K (Ng + 11(0)) , Vt > 0, (4.19)

 

1

0)

where K = 1 + H( > 0, then by (4.7) we have

IluEni < C ( 1 + b) Mug, Vt > 0. (4.20)

P

Inserting (4.20) into (4.17), to get

L'(t) > w IlVutg + a ( 1 -- E (m m - 1) 8( 7171)) IlUtIrml + E (1 + 2) 1lUtg

(4.21)

-Ec1 1Vuk22 + Ea2(9 0 Vu(t) -- EC111413p#177; €pH(t).

where Ci = aC r771 ( 1 + b) > 0.

p

By using (4.1) and by the same statements as in [16], we have

2H(t) = - Iutl22 - Ivuk22 +

Zt

0

g(s)ds kruk2 2 ~ (g ~ ru) (t) + 2b p

IlullPp

 

(4.22)

~ ~Iutk22 IVuk22 -- (g Vu) (t) + 2pb Murp , Vt > 0.

Adding and substituting the value 2a3H(t) from (4.21), and choosing 8 small enough such that

a3 < min {al, a2} , we obtain

L'(t) > w Iloutll2 + a (1 -- E (m m1) 8 ( mln1)) Ilutrrni

+ E 11 + 2 -- a3) Iutk22 + E (al a3)1Vuk22

+ E (a2 -- a3) (g o Vu(t) + E (2p b a3 -- C1) 1uk1p

+ E (p -- 2a3) H(t). (4.23)
Now, once 8 is fixed, we can choose E small enough such that

1 -- E (m m1) gmlni) > 0, and L(0) > 0. (4.24)

Therefore, (4.23) takes the form

L'(t) > E0 {H(t) + Ilutg+ I1Vug+ (g o Vu(t)) + Murp} , (4.25)

for some 0 > 0.

Now, using (G2), Young's and Poincare's inequalities in (4.8) to get

L(t) < 01 {H(t) + 11741122 + IlVu112 2},(4.26) for some 01 > 0. Since, H(t) > 0, we have from (4.1)

t

1

2 mutg 2 -10 1- f g(s)ds) 11V 2

-- (g o Vu) (t)+bIIuIIP > 0, Vt > 0. (4.27)

0

Then,

1

2

0

@1 --

Zt

0

g(s)ds) Iloull2 < p b Murp

b
p

<

Murp + (g o Vu) (t). (4.28)

In the other hand, using (G1) , to get

1 1

2 (1 -- l)11V ug 2

< (1 t

-- I g(s)ds) 11V ug

o

b

<

p

11u11pp + (g 0 Vu) (t). (4.29)

Consequently,

2b

11Vug <

p

11u11pp + 2 (g 0 Vu)(t) + 2l 11Vu1122 , b,l > 0. (4.30)

Inserting (4.30) into (4.26) , to see that there exists a positive constant A such that

L(t) < A { H(t)+ 11ut1122+11Vu1122+ (g 0 Vu)(t)+ bp 11urp} , Vt > 0. (4.31)
From inequalities (4.25) and (4.31) we obtain the differential inequality

L'(t)

> it, for some ,u > 0, Vt > 0. (4.32)
L(t)

Integration of (4.32) , between 0 and t gives us

L(t) > L(0) exp (itt) , Vt > 0, (4.33)

From (4.8) and for E small enough, we have

By (4.33) and (4.34) , we have

L(t) < H(t) < b

p

11u11Pp . (4.34)

11u11pp > C exp (ut), C > 0, Vt > 0. (4.35)

Therefore, we conclude that the solution in the LP--norm growths exponentially.

 

précédent sommaire suivant






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy







Changeons ce systeme injuste, Soyez votre propre syndic



"Il ne faut pas de tout pour faire un monde. Il faut du bonheur et rien d'autre"   Paul Eluard