WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Notion de système formel. Prolégomènes à  une logique cognitivisme à  partir de Donald Davidson

( Télécharger le fichier original )
par Tamis MUAMBA NGUESHE
Université de Kinshasa - Licence 2010
  

précédent sommaire suivant

a. Les axiomes

AX1. (pvq)? p

AX2. p? (pvq)

AX3. (pvq)? (qvp)

AX4. (pvq)? (rvp) ? (rvq)

AX5. p? p

AX6. (p?q)? (p?q)

AX7. S p? p

AX6. S (p?q)? (Sp?Sq)

AX9. Pp? Sp

AX10. Pp? p

AX11. P (p?q)? (Pp?Pq)

b. Les definitions

Déf.1: p?q = df pvq Déf.1: p?q = df pvq

Déf.2: pËq = df (pvq)

Déf.3: (pq) = df.(p?q)Ë(q?p)

= df. ( ( pvq)v ( qvp))

Déf.4: p= df. p

Déf.5: -3=déf. (?)

Déf.6: = = déf ( -3)Ë (-3)

Déf.7: Sp = p

Déf.8: Sp = p

Déf.9: Pp = df p

Déf.10: Pp =df. p

précédent sommaire suivant