Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp

Home | Publier un mémoire | Une page au hasard


Etude Structurale et Dynamique de Solutions de Sucre Confinées

( Télécharger le fichier original )
par Gérald LELONG
Université d'Orléans - Thèse 2007

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy


1 P. Scott. Resurrection plants and the Secrets of Eternal Leaf. Annals of Botany 85, 159, (2000).

2 M. Watanabe. Anhydrobiosis in invertebrates. Appl. Entomol. Zool. 41 (1), 15, (2006).

3 J.C. Wright. Crytobiosis 300 years on from van Leuwenhoek: what have we learned about Tardigrades ? Zool. Anz. 240, 563, (2001).

4 F.A. Hoekstra, E.A. Golovina, J. Buitink. Mechanisms of plant desiccation tolerance. Trends in Plant Science 6 (9), 431, (2001).

5 D.K. Hincha, M. Hagemann. Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem. J. 383, 277, (2004).

6 L.M. Crowe. Lessons from nature: the role of sugars in anhydrobiosis. Comparative Biochemistry and Physiology Part A 131, 505, (2002).

7 A. Cesaro. All dried up. Nature Materials «News & Views » 5, 593, (2006).

8 J. Lehmann. Carbohydrates: Structure and Biology, p.8, Thieme, (1998).

9 A. Patist, H. Zoerb. Preservation mechanisms of trehalose in food and biosystems. Colloids and Surfaces B: Biointerfaces 40, 107, (2005).

10 D.P. Miller, J.J. de Pablo. Calorimetric Solution Properties of Simple Saccharides and Their Significance for the Stabilization of Biological Structure and Function. J. Phys. Chem. B 104, 8876, (2000).

11 J.L. Green, C.A. Angell. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 93, 2880, (1989).

12 Cf. le site Web de la London South Bank University dédié à l'eau et ses propriétés à l'adresse suivante:

13 D.R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2005,, CRC Press, Boca Raton, FL, 2005.

14 P. G. Debenedetti. Supercooled and glassy water. J. Phys.: Condens. Matter 15, R1669, (2003).

15 H.S. Frank, W.A.P. Luck (Ed.). Structure of water and aqueous solutions. p. 10-47, Veinheim: Verlag Chemie, (1974).

16 M. Mathlouthi. Water content, water activity, water structure and the stability of foodstuffs. Food Control 12, 409, (2001).

17 J. Israelachvili, H. Wennerstrom. Role of hydration and water structure in biological and colloidal interactions. Nature 379 (6562), 219, (1996).

18 A. Tongraar, B.M. Rode. Ab Initio QM/MM dynamics of anion-water hydrogen bonds in aqueous solution. Chem. Phys. Lett. 403, 314, (2005).

19 R. Chitra, P.E. Smith. Molecular Association in Solution : A Kirkwood-Buff Analysis of Sodium Chloride, Ammonium, Sulfate, Guanidium Chloride, Urea and 2,2,2-Trifluoroethanol in Water. J. Phys. Chem. B 106, 1491, (2002).

20 C.W. Bock, G.D. Markham, A.K. Katz, J.P. Glusker. The arrangement of first- and second-shell water molecules around metal ions: effects of charge and size. Theor. Chem.Acc. 115, 100, (2006).

21 H.S. Frank, W.Y. Wen. Structural aspects of ion-solvent interactions in aqueous solutions: a suggested picture of water structure. Disc. Farad. Soc. 24, 133, (1957).

22 G. Barone, V. Crescenzi, V. Vitagliano. Potassium Chloride Conductancein Aqueous Solution of a Structure-Forming Nonionic Solute, Hexamethylenetramine. J. Phys. Chem. 72, 2588, (1968).

23 K. Buijs, G.R. Choppin. Near-Infrared Studies of the Structure of Water. I. Pure Water. J. Chem. Phys. 39 (8), 2035, (1963).

24 C. Branca, S. Maccarrone, S. Magazù, G. Maisano, S.M. Bennington, J. Taylor. Tetrahedral order in homologous disaccharide-water mixtures. J. Chem. Phys. 122, 174513, (2005).

25 S.L. Lee, P.G. Debenedetti, J.R. Errington. A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions. J. Chem. Phys. 122, 204511, (2005).

26 S. Lawrence, P.G. Debenedetti, J.R. Errington. A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions. J. Chem. Phys. 122, 204511, (2005).

27 R. Giangiacomo. Study of water-sugar interactions at increasing sugar concentration by NIR spectroscopy. Food Chemistry 96, 371, (2006).

28 M.E. Gallina, P. Sassi, M. Paolantoni, A. Morresi, R.S. Cataliotti. Vibrational Analysis of Molecular Interactions in Aqueous Glucose Solutions. Temperature and Concentration Effects. J. Phys. Chem. B 110, 8856, (2006).

29 J.L. Dashnau, K.A. Sharp, J.M. Vanderkooi. Carbohydrate Intramolecular Hydrogen Bonding Cooperativity and its Effects on Water Structure. J. Phys. Chem. B 109, 24152, (2005).

30 Q. Liu, J.W. Brady. Anisotropic Solvent Structuring in Aqueous Sugar Solutions. J. Am. Chem. Soc. 118, 12276, (1996).

31 C. Branca, S. Magazù, F. Migliardo, P. Migliardo. Destructuring effect of trehalose on the tetraedral network of water: a Raman and neutron diffraction comparison. Physica A. 304, 314, (2002).

32 J. Wolfe, G. Bryant. Freezing, Drying, and/or Vitrification of Membrane-Solute-Water Systems. Cryobiology 39, 103, (1999).

33 T. Sei, T. Gonda, Y. Arima. Growth rate and morphology of ice crystals growing in a solution of trehalose and water. J. Crystal Growth 240, 218, (2002).

34 A. Lerbret, P. Bordat, F. Affouard, Y. Guinet, A. Hédoux, L. Paccou, D. Prévost, M. Descamps. Influence of homologous disaccharides on the hydrogen-bond network of water: complementary Raman scattering experiments and molecular dynamics simulations. Carbohydrate Research 340, 881, (2005).

35 C. Branca, S. Magazù, G. Maisano, P. Migliardo. Anomalous cryoprotective effectiveness of trehalose: Raman scattering evidences. J. Chem. Phys. 111 (1), 281, (1999).

36 C. Branca, S. Magazù, G. Maisano, P. Migliardo, A.K. Söper. Study on Destructuring effect of

trehalose on water by neutron diffraction. Appl. Phys. A 74, S450, (2002).

37 P. Bordat, A. Lerbret, J.-P. Demaret, F. Affouard, M. Descamps. Comparative study of trehalose, sucrose and maltose in water solutions by molecular modelling. Europhys. Lett. 65 (1), 41, (2004).

38 Y. H. Yoon, J.M. Pope, J. Wolfe. The Effects of Solutes on the Freezing Properties and Hydration Forces in Lipid Lamellar Phases. Biophys. J. 74, 1949, (1998).

39 F. Affouard, P. Bordat, M. Descamps, A. Lerbret, S. Magazù, F. Migliardo, A.J. Ramirez-Cuesta, M.F.T. Telling. A combined neutron scattering and simulation study on bioprotectant systems. Chem. Phys. 317, 258, (2005).

40 A. Lerbret. Etude de l'action bioprotectrice des sucres: une investigation par dynamique moléculaire et spectroscopie Raman. Thèse de Doctorat, Université des Sciences et Technologies de Lille, 2005.

41 V. Molinero, T. Cagin, W.A. Goddard III. Sugar, water and free volume networks in concentrated sucrose solutions. Chem. Phys. Lett. 377, 469, (2003).

42 B. Leroux, H. Bizot, J.W. Brady, V. Tran. Water structuring around complex solutes: theoretical modeling of -D-glucopyranose. Chem. Phys. 216, 349, (1997).

43 K.S. Sidhu, J.M. Goodfellow, J.Z. Turner. Effect of molecular shape and electrostatic interactions on the water layer around polar and apolar groups in solution. J. Chem. Phys. 110 (16), 7943, (1999).

44 P.E. Mason, G.W. Neilson, A.C. Barnes, J.E. Enderby, J.W. Brady, M.-L. Saboungi. Neutron diffraction studies on aqueous solutions of glucose. J. Chem. Phys. 119 (6), 3347, (2003).

45 K. Fuchs, U. Kaatze. Molecular Dynamics of Carbohydrate Aqueous Solutions. Dielectric Relaxation as a Function of Glucose and Fructose Concentration. J. Phys. Chem. B 105, 2036, (2001).

46 R.K. Schmidt, M. Karplus, J.W. Brady. The Anomeric Equilibrium in D-Xylose: Free Energy and the Role of Solvent Structuring. J. Am. Chem. Soc. 118, 541, (1996).

47 M.C. Donnamaria, E.I. Howard, J.R. Grigera. Interaction of Water with -Trehalose in Solution:

Molecular Dynamics Simulation Approach. J. Chem. Soc. Faraday Trans. 90 (18), 2731, (1994).

48 Y. Choi, K.W. Cho, K. Jeong, S. Jung. Molecular dynamics of trehalose as a »dynamic reducer» for solvent water molecules in the hydration shell. Carbohydr. Res. 341, 1020, (2006).

49 C.J. Roberts, P.G. Debenedetti. Structure and Dynamics in Concentrated, Amorphous CarbohydrateWater Systems by Molecular Dynamics Simulation. J. Phys. Chem. B 103, 7308, (1999).

50 S.N. Timasheff. Protein Hydration, Thermodynamic Binding, and Preferential Hydration. Biochemistry 41 (6), 13474, (2002).

51 J.H. Crowe, F.A. Hoekstra, L.M. Crowe. Anhydrobiosis. Ann. Rev. Physiol. 54, 579, (1992).

52 S. Chianta, N. Kahya, P. Schwille. Dehydration Damage of Domain-Exhibiting Supported Bilayers: An AFM Study on the Protective Effects of Disaccharides and Other Stabilizing Substances. Langmuir 21, 6317, (2005).

53 L.M. Crowe, J.H. Crowe, A. Rudolph, C. Wormersley, L. Appel. Preservation of freeze-dried liposomes by trehalose. Arch. Biochem. Biophys. 242, 240, (1985).

54 M.A. Villareal, S.B. Diaz, E. Anibal Disalvo, G.G. Montich. Molecular Dynamics Simulation of the Interaction of Trehalose with Lipid Membranes. Langmuir 20, 7844, (2004).

55 C. Lambruschini, A. Relini, A. Ridi, L. Cordone, A. Gliozzi. Trehalose Interacts with Phospholipid Polar Heads in Langmuir Monolayers. Langmuir 16, 5467, (2000).

56 B.W. Lee, R. Faller, A.K. Sum, I. Vattulainen, M. Patra, M. Karttunen. Structural effects of small molecules on phospholipid bilayers investigated by molecular simulations. Fluid Phase Equilibria 228-229, 135, (2005).

57 C.S. Pereira, P.H. Hünenberger. Interaction of the Sugars Trehalose, Maltose and Glucose with a Phospholipid Bilayer: A Comparative Molecular Dynamics Study. J. Phys. Chem. B 110, 15572, (2006).

58 T. Matsuoka, T. Okada, K. Murai, S. Koda, H. Nomura. Dynamics and hydration of trehalose and maltose in concentrated solutions. J. Molecular Liquids 98-99, 317, (2002).

59 A.K. Sum, R. Faller, J.J. de Pablo. Molecular Simulation Study of Phospholipid Bilayers and Insights of the Interactions with Disaccharides. Biophys. J. 85, 2830, (2003).

60 J.H. Crowe, J.F. Carpenter, L.M. Crowe. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60, 73, (1998).

61 J.H. Crowe, A.E. Oliver, F.A. Hoekstra, L.W. Crowe. Stabilization of Dry Membranes by Mixtures of Hydroxyethyl Starch and Glucose: The role of vitrification. Cryobiology 35, 20, (1997).

62 F. Affouard, P. Bordat, M. Descamps, A. Lerbret, S. Magazù, F. Migliardo, A.J. Ramirez-Cuesta, M.F.T. Telling. A combined neutron scattering and simulation study on bioprotectant systems. Chem. Phys. 317, 258, (2005).

63 C. Branca, S. Magazù, G. Maisano, P. Migliardo, E. Tettamanti. On the bioprotective effectiveness of trehalose: ultrasonic technique, Raman scattering and NMR investigations. J. Molecular Structure 480-481, 133, (1999).

64 C. Branca, S. Magazù, G. Maisano, P. Migliardo, M.T.F. Telling. Temperature Evolution of the Diffusive Dynamics of Disaccharide Aqueous Solutions by Quasielastic Neutron Scattering. J. Phys. Chem. B 108, 17069, (2004).

65 N. Ekdawi-Sever, J.J. de Pablo, E. Feick, E. von Meerwall. Diffusion of Sucrose and -Trehalose

in Aqueous Solutions. J. Phys. Chem. A 107, 936, (2003).

66 A. Faraone, S. Magazà, R.E. Lechner, S. Longeville, G. Maisano, D. Majolino, P. Migliardo, U. Wanderlingh. Quasielastic neutron scattering from trehalose aqueous solutions. J. Chem. Phys. 115 (7), 3281, (2001).

67 I. Köper, M.-C. Bellissent, W. Petry. Dynamics from picoseconds to nanoseconds of trehalose in aqueous solutions as seen by quasielastic neutron scattering. J. Chem. Phys. 122, 014514, (2005).

68 S. Magazù, R.E. Lechner, S. Longeville, G. Maisano, D. Majolino, P. Migliardo, U. Wanderlingh. Diffusive dynamics in trehalose aqueous solutions by QENS. Physica B 276-278, 475, (2000).

69 S. Magazù, P. Migliardo, M.T.F. Telling. -Trehalose-Water Solutions. VIII. Study of the

Diffusive Dynamics of Water by High-Resolution Quasi Elastic Neutron Scattering. J. Phys. Chem. B 110, 1020, (2006).

70 S. Magazù, V. Villari, P. Migliardo, G. Maisano, M.T.F. Telling. Diffusive Dynamics of Water in the Presence of Homologous Disaccharides: A Comparative Study by Quasi Elastic Neutron Scattering. IV. J. Phys. Chem. B 105, 1851, (2001).

71 D.P. Miller, J.J. de Pablo, H. Corti. Thermophysical Properties of Trehalose and Its Concentrated Aqueous Solutions. Pharmaceutical Research 14 (5), 578, (1997).

72 C. Branca, S. Magazù, G. Maisano, F. Migliardo, P. Migliardo, G. Romeo. -Trehalose/Water

Solutions. 5. Hydration and Viscosity in Dilute and Semidilute Disaccharide Solutions. J. Phys. Chem. B 105, 10140, (2001).

73 N.C. Ekdawi-Sever, P.B. Conrad, J.J. de Pablo. Molecular Simulation of Sucrose Solutions near the Glass Transition Temperature. J. Phys. Chem. A 105, 734, (2001).

74 P.B. Conrad, J.J. de Pablo. Computer Simulation of the Cryoprotectant Disaccharide -Trehalose

in Aqueous Solution. J. Phys. Chem. A 103, 4049, (1999).

75 L.J. Smith, D.L. Price, Z. Chowdhuri, J.W. Brady, M.-L. Saboungi. Molecular dynamics of glucose in solution: A quasielastic neutron scattering study. J. Chem. Phys. 120 (8), 3527, (2004).

76 C. Talon, L.J. Smith, J.W. Brady, B.A. Lewis, J.R.D. Copley, D.L. Price, M.-L. Saboungi. Dynamics of Water Molecules in Glucose Solutions. J. Phys. Chem. B 108, 5120, (2004).

77 G.R. Moran, K.R. Jeffrey. A study of the molecular motion in glucose/water mixtures using deuterium nuclear magnetic resonance. J. Chem. Phys. 110 (7), 3472, (1999).

78 M. Rampp, C. Buttersack, H.-D. Lüdemann. c,T-Dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions. Carb. Res. 328, 561, (2000).

79 M. Feeney, C. Brown, A. Tsai, D. Neumann, P.G. Debenedetti. Incoherent Quasi-elastic Neutron Scattering from Fructose/Water Solutions. J. Phys. Chem. B 105, 7799, (2001).

80 K. Sköld, D.L. Price (Eds.) dans Methods of Experimental Physics Volume 23 - Part A Neutron Scattering. Chapitre 1: Introduction to Neutron Scattering. Academic Press, (1986).

81 G.L. Squires (Eds.) dans Introduction to the Theory of Thermal Neutron Scattering. Chapitre 1: Introduction & Chapitre 2: Nuclear scattering - basic theory, Cambridge University Press, (1978).

82 D.L. Price. Inelastic and quasielastic neutron scattering. Curr. Opinion in Solid State & Material Science 2, 477, (1997).

83 J.-P. Cotton. Diffraction et spectrométrie des neutrons. Techniques de l'ingénieur. PE 1 095, (1996).

84 A.-J. Dianoux, G. Lander (Eds.). dans Neutron Data Booklet. Institut Laue-Langevin, (2002).

85 J.R. Copley, J.C. Cook. The Disk Chopper Spectrometer at NIST: a new instrument for quasielastic neutron scattering studies. Chem. Phys. 292, 477, (2003).

86 A. Meyer, R.M. Dimeo, P.M. Gehring, D.A. Neumann. The high-flux backscattering spectrometer

at the NIST Center for Neutron Research. Rev. Sci. Instrum. 74, 2759, (2003).

87 La série de programmes DAVE a été utilisée pour déterminer la fonction de diffusion S(Q,E). DAVE est téléchargeable gratuitement à l'adresse .

88 M. Bée dans Quasielastic Neutron Scattering: Principles and applications in Solid State Chemistry, Biology, and Materials Science. Adam Hilger, Bristol (1998).

89 A. Einstein. Uber die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen von A. Einstein. Ann. Phys. Leipzig 17, 549, (1905).

90 C.T. Chudley, R.J. Elliott. Neutron Scattering from a Liquid on a Jump Diffusion Model. Proc. Phys. Soc. 77, 353, (1961).

91 K.S. Singwi, A. Sjölander. Diffusive Motions in Water and Cold Neutron Scattering. Phys. Rev. 119 (3), 863, (1960).

92 J. Teixeira, M.-C. Bellissent-Funel, S.-H. Chen, A.J. Dianoux. Experimental determination of the nature of diffusive motions of water molecules at low temperature. Phys. Rev. A 31 (3), 1913, (1985).

93 V.F. Sears. Theory of cold neutron scattering by homonuclear diatomic liquids. 2. Hindered rotation. Can. J. Phys. 44 (6), 1299, (1966).

94 J.W. Brady, C. Talon, M.-L. Saboungi. Dynamics of D-glucose-Water Systems by Molecular Dynamics Simulations. Communication interne.

95 M.A. Adams, W.S. Howells, M.T.F. Telling. The IRIS User Guide, 2nd edition, Rutherford Appleton Laboratory Technical Report (RAL-TR-2001-002, 2001).

96 M.T.F. Telling, W.S. Howells. GUIDE - IRIS data analysis, ISIS Facility, Rutherford Appleton Laboratory (2000), & W. S. Howells, MODES manual, ISIS Facility, Rutherford Appleton Laboratory (2003).

97 L. Liu, A. Faraone, C.-Y. Mou, C.-W. Yen, S.-H. Chen. Slow dynamics of supercooled water confined in nanoporous silica materials. J. Phys.: Condens. Matter 16, S5403, (2004).

98 M.-C. Bellissent-Funel. Status of experiments probing the dynamics of water in confinement. Eur. Phys. J. E 12, 83, (2003).

99 A. Faraone, L. Liu, C.-Y. Mou, P.-C. Shih, J.R.D. Copley, S.-H. Chen. Translational and rotational dynamics of water in mesoporous silica materials: MCM-41-S and MCM-48-S. J. Chem. Phys. 119(7), 3963, (2003).

100 F. Mansour, R.M. Dimeo, H. Peemoeller. High-resolution inelastic neutron scattering from water in mesoporous silica. Phys. Rev. E 66, 041307, (2002).

101 C. J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, (1990).

102 J. Livage. Sol-Gel Processes. Current Opinion in Solid State & Materials Science. 2, 132, (1997).

103 C.J. Brinker, G.W. Scherer. Sol Gel Glass: I. Gelation and Gel Structure. J. Non-Cryst. Solids 70, 301, (1985).

104 R.K. Iler. The Chemistry of Silica : Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley Interscience, (1979).

105 J. Livage, M. Henry, C. Sanchez. Sol-Gel Chemistry of Transition Metal Oxides. Progress in Solid State Chemistry 18 (4), 259, (1988).

106 A.C. Pierre. Introduction aux Procédés Sol-Gel. Editions Septima, Paris, (1992).

107 J. Philippou, L. Kocon. Elaboration des gels et des aérogels. Techniques de l'ingénieur. J2, 230, (2004).

108 P. Audebert, F. Miomandre. Procédé sol-gel de polymérisation. AM 3, 048, (2005).

109 I. Jaymes, A. Douy, D. Massiot. Synthesis of a Mullite Precursor from Aluminium Nitrate and Tetraethoxysilane via Aqueous Homogeneous Precipitation: An 27Al and 29Si Liquid- and Solid-State NMR Spectroscopic Study. J. Am. Ceram. Soc. 78 (10), 2648, (1995).

110 G. Lelong, D.L. Price, A. Douy, S. Kline, J.W. Brady, M.-L. Saboungi. Molecular dynamics of confined glucose solutions. J. Chem. Phys. 122, 164504, (2005).

111 M. Kaèuráková, M. Mathlouthi. FTIR and laser-Raman spectra of oligosaccharides in water : characterization of the glycosidic bond. Carbohydrate Research 284, 145, (1996).

112 M. Mathlouthi, C. Luu, A.M. Meffroy-Biget, D.V. Luu. Laser-Raman Study of Solute-Solvent Interactions in Aqueous Solutions of D-Fructose, D-glucose and Sucrose. Carbohydrate Research 81, 213, (1980).

113 M. Mathlouthi, D.V. Luu. Laser-Raman Spectra of D-glucose and sucrose in Aqueous Solution. Carbohydrate Research 81, 203, (1980).

114 G.E. Walrafen. Raman Spectral Studies of Water Structure. J. Chem. Phys. 40 (11), 3249, (1964).

115 R.L. Frost, J. Kristof, L. Rintoul, J.T. Kloprogge. Raman spectroscopy of urea-intercalated kaolinites at 77K. Spectrochimica Acta Part A 56, 1681, (2000).

116 C.G. Windsor. An Introduction to Small-Angle Neutron Scattering. J. Appl. Cryst. 21, 582, (1988).

117 S.-H. Chen, T.-S. Lang dans Methods of Experimental Physics Volume 23 - Part B Neutron Scattering. Chapitre 16: Colloidal Solutions. Academic Press, (1986).


J.S. Higgins, H.C. Benoit dans Polymers and Neutron Scattering. Chapitre 4: Theoretical Basis of Scattering et Chapitre 6: Form Factors. Clarendon Press - Oxford, (1994).

119 P. Lidnen, T. Zemb dans Neutron, X-ray and Light Scattering. North-Holland, (1991).

120 C.J. Glinka, J. Barker, B. Hammouda, S. Krueger, J. Moyer, W. Orts. The 30 m Small-Angle Neutron Scattering Instruments at the National Institute of Standards and Technology. J. Appl. Cryst. 31 (3), 430, (1998).

121 T. Freltoft, J.K. Kjems, S.K. Sinha. Power-law correlations and finite-size effects in silica particleaggregates studied by small-angle neutron scattering. Phys. Rev. B 33 (1), 269, (1986).

122 J. Teixeira. Small-angle scattering by fractals systems. J. Appl. Crystallogr. 21, 781, (1988).

123 D.W. Schaefer, K.D. Keefer dans Better Ceramics Through Chemistry. C.J. Brinker (Eds), D.E.

Clark (Eds), D.R. Ulrich (Eds) . Elsevier North-Holland, New-York, (1984).

124 F. Ricoul, M. Dubois, T. Zemb. Adsorption Study on DDAB Bilayers Using Contrast Variation with SANS. J. Phys. II France 7, 69, (1997).

125 B. Demé, T. Zemb. Measurement of sugar depletion from uncharged lamellar phases by SANS contrast variation. J. Appl. Cryst. 33, 569, (2000).

126 B. Demé, M. Dubois, T. Zemb, B. Cabane. Effect of Carbohydrates on the Swelling of a Lyotropic Lamellar Phase. 100, 3828, (1996).

127 D. Lairez, J. Pelta. Diffusion de neutrons aux petits angles : application à l'étude des macromolécules biologiques en solution. J. Phys. IV France 1, 1, (2004).

128 J.P. Cotton. Variations on contrast in SANS: determination of self and distinct correlations functions. Advances in Colloid and Interface Science 69, 1, (1996).

129 C.J. Glinka, J. Barker, B. Hammouda, S. Krueger, J. Moyer, W. Orts. The 30 m Small-Angle Neutron Scattering Instruments at the National Institute of Standards and Technology. J. Appl. Cryst. 31 (3), 430, (1998).

130 U. Keiderling. A. Wiedenmann. New SANS Instrument at the BER II Reactor in Berlin, Germany. Physica B 213-214, 895, (1995).

131 Le logiciel BerSANS peut être téléchargé sur le site du BENSC à l'adresse suivante : en.htm

132 S.B. Engelsen, C. Monteiro, C. Hervé de Penhoat, S. Pérez. The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy. Biophys. J. 93, 103, (2001).

133 A. Lerbret, J.W. Brady. Simulations de dynamique moléculaire du tréhalose dans des gels de silice. Communication Interne.

134 T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato. The Preparation of AlkyltrimethylammoniumKanemite Complexes and Their Conversion to Mesoporous Materials. Bull. Chem. Soc. Jpn. 63, 988, (1990).

135 S. Inagaki, Y. Fukushima, K. Kuroda. Synthesis of Highly Ordered Mesoporous Materials From a Layered Polysilicate. J. Chem. Soc., Chem. Commun. 1993, 680, (1993).

136 C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck. Ordered Mesoporous Molecular Sieves synthesized by a Liquid-Crystal Template Mechanism. Nature. 359, 710, (1992).

137J. S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olsen, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 114, 10835, (1992 ).

138 J.S. Beck. US Patent 5,057,296, (1991).

139 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli. US Patent 5,102,643, (1992).

140 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli. US Patent 5,102,643, (1992).

141 V. Chiola, J.E. Ritsko, C.D. Vanderpool. US Patent 3 556 725, (1971).

142 F. Di Renzo, H. Cambon, R. Dutartre. A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Materials 10, 283, (1997).

143 D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Å Pores. Science. 279, 548, (1998).

144 Q. Huo, D.I. Margolese, U. Ciesla, P. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schüth, G.D. Stucky. Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials. Nature. 368, 317, (1994).

145 P. Feng, X. Bu, G.D. Stucky, D.J. Pine. Monolithic Mesoporous Silica Templated by Microemulsion Liquid Crystals. J. Am. Chem. Soc. 122, 994, (2000).

146 C.Y. Chen, S.Q. Xiao, M.E. Davis. Studies on Ordered Mesoporous Materials III. Comparison of MCM-41 to Mesoporous Materials Derived from Kanemite. Microp. Mater. 4, 1, (1995).

147 C.S. Cundy, P.A. Cox. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. 103, 663, (2003).

148 T. Linssen, K. Cassiers, P. Cool, E.F. Vansant. Mesoporous templated silicates: an overview of their synthesis, catalytic activation and evaluation of the stability. Advances in Colloid and Interface Science 103, 121, (2003).

149 P. Selvam, S.K. Bhatia, C.G. Sonwane. Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate molecular Sieves. Ind. Eng. Chem. Res. 40, 3237, (2001).

150 G.J. de A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patanin. Chemical Strategies to Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chem. Rev. 102, 4093, (2002).

151 D. Myers dans Surfactant Science and Technology, VCH, New York, (1992).

152 J.Y. Ying, C.P. Mehnert, M.S. Wong. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angew. Chem., Int. Ed. 38, 56, (1999).

153 X.S. Zhao, G.Q.M. Lu, G.J. Miller. Advances in Mesoporous Molecular Sieve MCM-41. Ind. Eng. Chem. Res. 35, 2075,(1996).

154 V. Meynen. Synthesis and characterization of a new generation of materials with bimodal porosity. Thèse de Doctorat, Faculté des Sciences, Université d'Anvers, 2006.

155 N.K. Raman, M.T. Anderson, C.J. Brinker. Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem. Mater. 8, 1682, (1996).

156 I. Soten, G.A.Ozin. Supramolecular Organization and Materials Design. W. Jones, C.N.R. Rao, eds., Cambridge University Press: Cambridge, UK, p. 34, (2002).

157 S. Han, W. Hou, J. Xu, Z. Li. Synthesis of hollow spherical silica with MCM-41 mesoporous structure. Colloid Polym. Sci. 282 (11), 1286, (2004).

158 Y. Zhu, J. Shi, H. Chen, W. Shen, X. Dong. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Microporous Mesoporous Mater. 84, 218, (2005).

159 E. Van Bavel, P. Cool, K. Aerts, E.F. Vansant. Morphology variations of Plugged Hexagonal Templated Silica. J. Porous. Mater. 12, 65-69, (2005).

160 D. Zhao, J. Sun, Q. Li, G.D. Stucky. Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chem. Mater. 12, 275, (2000).

161 S. Huh, J.W. Wiench, J.-C. Yoo, M. Pruski, V. S.-Y. Lin. Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method. Chem. Mater. 15, 4247, (2003).

162 S. Bhattacharyya, G. Lelong, M.-L. Saboungi. Recent progress in the synthesis and selected applications of MCM-41 : a short review. Journal ofExperimental Nanoscience 1 (3), 375, (2006).

163 W. Stöber, A. Funk, E. Bohn. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science. 26 (1), 62 (1968).

164 M. Grün, I. Lauer, K.K. Unger. The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 9 (3), 254, (1997).

165 M. Kruk, M. Jaroniec. Accurate Method for Calculating Mesopore Size Distributions from Argon Adsorption Data at 87 K Developed Using Model MCM-41 Materials. Chem. Mater. 12, 222, (2000).

166 C.-Y. Mou, H.-P. Lin. Control of morphology in synthesizing mesoporous silica. Pure Appl. Chem. 72, 137, (2000).

167 K.K. Unger, D. Kumar, M. Grün, G. Bückel, S. Lüdtke, T. Adam, K. Schumacher,S.J. Renker. Synthesis of spherical porous silicas in the micron and submicron size range: challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations. Journal of Chromatography A. 892 (1-2), 47, (2000).

168 R.I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs, A.E. Ostafin. Synthesis of Nanoscale Mesoporous Silica Spheres with Controlled Particle Size. Chem.Mater. 14, 4721, (2002).

169 Y. Ma, -* .

L Qi, J. Ma, Y. Wu, O. Liu, H. Cheng. Large-pore mesoporous silica spheres: synthesis and application in HPLC. Colloids and Surfaces A. 229 (1-3), 1, (2003).

170 K. Yano, Y.J. Fukushima. Particle size control of mono-dispersed super-microporous silica spheres. J. Mater. Chem. 13 (10), 2577, (2003).

171 H. Yang, G. Vovk, N. Coombs, I. Sokolov, G.A. Ozin. Synthesis of mesoporous silica spheres under quiescent aqueous acidic conditions. J. Mater. Chem. 8 (3), 743, (1998).

172 Q. Huo, J. Feng, F. Schüth, G.D. Stucky. Preparation of Hard Mesoporous Silica Spheres. Chem. Mater. 9, 14, (1997).

173 Y. Miyake, T. Kato. The formation process of spherical mesoporous silica with reverse nanostructure of MCM-41 in a two-phase system. J. Chem. Eng. Japan, 38 (1), 60, (2005).

174 S. Liu, P. Cool, O. Collart, P. Van Der Voort, E.F. Vansant, O.I. Lebedev, G. Van Tendeloo, M. Jiang. The influence of the alcohol concentration on the structural ordering of mesoporous silica: Cosurfactant versus cosolvent. J. Phys. Chem. B. 107, 10405, (2003).

175 G. Van Tendeloo, O.I. Lebedev, O. Collart, P. Cool and E.F. Vansant. Structure of nanoscale mesoporous silica spheres? J. Phys. Condens. Matter. 15, S3037, (2003).

176 O.I. Lebedev, G. Van Tendeloo, O. Collart, P. Cool, E.F. Vansant. Structure and microstructure of nanoscale mesoporous silica spheres. Solid State Sciences. 6, 489, (2004).

177 N. Israelachivi, D.J. Mitchell, B.W. Niham. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 72(2), 1525, (1976).

178 .-..

y Huo, D.I. Margolese, G.D. Stucky. Surfactant Control of Phases in the Synthesis of Mesoporous

Silica-Based Materials. Chem. Mater. 8, 1147, (1996).

179 Y. Lu, H. Fan, A. Stump, T.L. Ward, T. Rieker, C.J. Brinker. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398, 223, (1999).

180 B. Alonso, C. Clinard, D. Durand, E. Vérona, D. Massiot. New routes to mesoporous silica-based spheres with functionalised surfaces. Chem. Commun. 13, 1746, (2005).

181 N. Baccile, D. Grosso, C. Sanchez. Aerosol generated mesoporous silica particles. J. Mater. Chem. 13, 3011, (2003).

182 M.T. Bore, S.B. Rathod, T.L. Ward, A.K. Datye. Hexagonal Mesostructure in Powders Produced by Evaporation-Induced Self-Assembly of Aerosols from Aqueous Tetraethoxysilane Solutions. Langmuir 19, 256, (2003).

183 B. Alonso, A. Douy, E. Véron, J. Perez, M.-N. Rager, D. Massiot. Morphological and textural control of spray-dried mesoporous silica-based spheres. J. Mater. Chem. 14, 1, (2004).

184 Y. -* , u

L R. Ganguli, C.A. Drewien, M.T. Anderson, C.J. Brinker, W. Gong, Y. Guo, H. Soyez, B.

Dunn, M.H. Huang, J.I. Zink. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature 389, 364, (1997).

185 C.J. Brinker, Y. Lu, A. Sellinger, H. Fan. Evaporation-Induced Self-Assembly: Nanostructures Made Easy. Adv. Mater. 11, 579, (1999).

186 B. Alonso, A. Douy, E. Véron, J. Perez, M.-N. Rager, D. Massiot. Morphological and textural control of spray-dried mesoporous silica-based spheres. J. Mater. Chem. 14, 1, (2004).

187 S. Förster, A. Timmann, M. Konrad, C. Schellbach, A. Meyer, S.S. Funari, P. Mulvaney, R. Knott. Scattering Curves of Ordered Mesoscopic Materials. J. Phys. Chem. B 109, 1347, (2005).

188 K.J. Edler, P.A. Reynolds, J.W. White. Small-Angle Neutron Scattering Studies on the Mesoporous Molecular Sieve MCM-41. J. Phys. Chem. B 102, 3676, (1998).

189 J.D.F. Ramsay. Surface and pore structure characterisation by neutron scattering techniques. Advances In Colloids and Interface Science 76-77, 13, (1998).

190 .-..

y Cai, W.-Y. Lin, F.-S. Xiao, W.-Q. Pang, X.-H. Chen, B.-S. Zou. The preparation of highly

ordered MCM-41 with extremely low surfactant concentration. Microp. Mesop. Mat. 32, 1, (1999).

191 K.J. Edler, P.A. Reynolds, J.W. White. Small-Angle Neutron Scattering Studies on the Mesoporous Molecular Sieves MCM-41. J. Phys. Chem. B 102, 3676, (1998).

192 Les facteurs de formes utilisés ici ont été calculés à partir des macros mises à la disposition par le NCNR sur le site : SANS.html

193 S. Brunauer, S. Deming, L. Deming, E. Teller. On a theory of the van der Walls Adsorption of Gases. J. Am. Chem. Soc. 62, 1723, (1940).

194 IUPAC. Reporting Physisorption Data for Gas/Solid Systems. Pure Appl. Chem. 87, 603, (1957).

195 C.G. Sonwane, S.K. Bhatia. Structural Characterization of MCM-41 over a Wide Range of Length Scales. Langmuir 15, 2809, (1999).

196 U. Ciesla, F. Schüth. Ordered Mesoporous Materials. Microporous Mesoporous Mater. 27, 131, (1999).

197 N. Floquet, J. Coulomb, N. Dufau, G. Andre, R. Kahn. Confined Water in Mesoporous MCM-41 and Nanoporous AlPO4-5: Structure and Dynamics. Adsorption 11, 139, (2005).

198 G.T. Gao, X.C. Zeng, H. Tanaka. The melting temperature of proton-disordered hexagonal ice : A computer simulation of 4-site transferable intermolecular potential model of water. J. Chem. Phys. 112 (19), 8534, (2000).

199 A. Schreiber, I. Ketelsen, G.H. Findenegg. Melting and freezing of water in ordered mesoporous silica materials. Phys. Chem. Chem. Phys. 3, 1185, (2001).

200 A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A. Walker, J.A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G.D. Stucky, B.F. Chmelka, Cooperative organization of inorganicsurfactant and biomimetic assemblies. Science 267, 1138, (1995).

201 Q.

Cai, Z.-S. Luo, W.Q. Pang, Y.-W. Fan, X.-H. Chen, F.-Z. Cui. Dilute Solutions Routes to Various Controllable Morphologies of MCM-41 Silica with a Basi Medium. Chem. Mater. 13, 258, (2001).

202 G. Büchel, K.K. Unger, A. Matsumoto, K. Tsutsumi. A Novel Pathway for Synthesis of Submicrometer-Size Solid Core/Mesoporous Shell Silica Spheres. Adv. Mater. 10 (13), 1036, (1998).

203 S. Mitra, R. Mukhopadhyay, I. Tsukushi, S. Ikeda. Dynamics of water in confined space (porous alumina): QENS study. J. Phys.: Condens. Matter. 13, 8455, (2001).

204 M.-C. Bellissent-Funel, S.H. Chen, J.-M. Zanotti. Single-particle dynamics of water molecules in confined space. Phys. Rev. B 51 (5), 4558, (1995).

205 J. Banys, M. Kinka, J. Macutkevic, G. Völkel, W. Böhlmann, V. Umamaheswari, M. Hartmann, A. Pöppl. Broadband dielectric spectroscopy of water confined in MCM-41 molecular sieve materials - low-temperature freezing phenomena. J. Phys.: Condens. Matter. 17, 2843, (2005).

206 B. Grünberg, T. Emmler, E. Gedat, I. Shenderovitch; G.H. Findenegg, H.-H. Limbach, G.
Buntkowsky. Hydrogen Bonding of Water Confined in Mesoporous Silica MCM-41 and SBA-15

Studied by 1H Solid-State NMR. Chem. Eur. J. 10, 5689, (2004).

207 S. Takahara, S. Kittaka, T. Mori, Y. Kuroda, T. Yamaguchi, M.-C. Bellissent-Funel. Neutron Scattering Study of Water Molecules Confined in MCM-4 1. Adsorption 11,479, (2005).

208 K. Morishige, K. Kawano. Freezing and melting of water in a single cylindrical pore: The poresize dependence of freezing and melting behavior. J. Chem. Phys. 110 (10), 4867, (1999).

209 D'après le site de sigma-Aldrich à l'adresse suivante:

210 T. Chen, A. Fowler, M. Toner. Literature Review: Supplemented Phase Diagram of the TrehaloseWater Binary Mixture. Cryobiology, 40, 277, (2000).

211 E.R. Caffarena, J.R. Grigera. Glass transition in aqueous solutions of glucose. Molecular dynamics simulation. Carbhydrate Research 300, 51, (1997).

212 D.J. Bicout, G. Zaccai. Protein Flexibility from the Dynamical Transition: A force Constant Analysis.Biophys. J. 80, 1115, (2001).

213 S. Magazu, F. Migliardo, C. Mondelli, G. Romeo. Temperature dependence of mean square displacement by IN13: a comparison between trehalose and sucrose water mixtures. Chem. Phys. 292, 247, (2003).

214 Laboratoire Léon Brillouin. Brochure du laboratoire. (1999)


Bien que le rôle actif des sucres soit connu dans la stabilisation des membranes cellulaires lors de fortes déshydratations, il s'avère que les processus à l'origine de cette protection ne sont pas encore bien compris. Néanmoins, la très grande affinité de l'eau pour le sucre, comme en témoigne la formation de très nombreuses liaisons hydrogène, est semble-t-il responsable en partie de cette propriété exceptionnelle. L'étude expérimentale de la dynamique des molécules de sucre et d'eau permettra ainsi de quantifier l'importance de ces interactions.

Dans ce travail, nous nous sommes principalement intéressés à des solutions de mono- et disaccharides (glucose, fructose et tréhalose). La diffusion quasi-élastique des neutrons a permis de mesurer, à l'échelle de la picoseconde, la dynamique de l'eau et du sucre en solution et sous confinement dans des matériaux poreux présentant un mimétisme d'échelle avec le vivant. Les deux matrices sélectionnées, c'est-à-dire un gel de silice aqueux et des nanosphères de silice mésoporeuse de type MCM-41, qui présentent des diamètres de pores de 18 et 3 nm respectivement, ont été caractérisées grâce à un large panel de techniques expérimentales (SANS, MET, MEB, Spectroscopie Raman, BET, DRX). L'effet du confinement sur la dynamique et sur les transitions de phase solide-liquide a ainsi pu être exploré, ainsi que l'effet protecteur des sucres grâce à une étude de déshydratation in-situ suivie par diffusion des neutrons aux petits angles.

MOTS-CLES : Sucres, mono- et disaccharides, solution aqueuse, synthèse, silice, gel, sphères mésoporeuses, MCM-41, confinement, dynamique moléculaire, transition de phase, QENS, SANS.

précédent sommaire suivant

La Quadrature du Net