WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Rôle des croà»tes microbiotiques sur l'hydrophobicité de la surface des sols de la région de Banizoumbou (Niger)

( Télécharger le fichier original )
par Soufiane AYACHI
Université de Reims Champagne Ardenne - Master 2 Recherche "Production Végétale et Impact Environnemental", Option "Production Végétale" 2009
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Conclusion et perspectives

Cette étude a porté sur les croûtes microbiotiques de la région de Banizoumbou au Niger. Les résultats obtenus montrent que l'hydrophobicité des croEtes microbiotiques est une caractéristique variable selon le taux de couverture, la biomasse microbienne et l'usage des sols.

Les croûtes microbiotiques issues des parcelles protégées contre le passage du bétail et des humains montrent un degré d'hydrophobicité plus élevé que les parcelles soumises au p1turage. Cette caractéristique semble Itre accompagnée par des taux de couverture et de biomasse microbienne élevés.

Ce travail constitue une étude préliminaire qui servira de base à la compréhension du comportement de la dynamique de l'eau à la surface des sols portant des croItes microbiotiques dans la zone sahélienne du Niger. L'étude d'autres types de croItes microbiotiques permettra d'élargir la gamme de données sur l'hydrophobicité.

La connaissance de paramètres comme la teneur en fraction fine, la matière organique totale et la teneur en produits de sécrétions polysaccharidiques (EPS) dans les horizons encroûtés permettront une meilleure compréhension de la variabilité de l'hydrophobicité.

Références bibliographiques

Acea MJ, Prieto-Fernandez A, Diz-Cid N (2003) Cyanobacterial inoculation of heated soils: effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biol Biochem 35: 513+524

Atwood LB, Krannitz PG (1999) Effect of the Microbiotic Crust of the Antelope-Brush (Purshia tridentata) Shrub-Steppe on Soil Moisture.Proc. Biology and Management of Species and Habitats at Risk, Kamloops, B.C. 2: 15#177;19

Bachmann J, Horton R, Van Der Ploeg RR, S. Woche S (2000) Modified sessile drop method for assessing initial soil#177;water contact angle of sandy soil. Soil Sci. Soc. Am. J 64: 564+567

Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the Cyanobacterium Microcoleus vaginatus. Great Basin Nat 53: 40#177;47 Belnap J (1995) Surface disturbances: Their role in accelerating desertification. Environmental Monitoring and Assessment 37: 39+57

Belnap J, Gillette DA (1997) Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degradation and Development 8: 355+362

Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. Journal of Arid Environments 39: 133#177;142

Belnap J, Kaltenecker JH, Rosentreter R, Williams J, Leonard S, Eldridge D (2001) Biological soil crusts: ecology and management. Technical Reference 1730#177;2, U.S. Department of the Interior. pp110

Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes 20: 3159#177;3178

Belnap J, Phillips SL, Herrick JE, Johansen JR (2007) Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management. Earth Surface Processes and Landforms 32: 75#177;84

Belnap J, Phillips SL, Witwicki DL, Miller ME (2008) Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. Journal of Arid Environments 72: 1257#177;1264

Bond RD, Harris JR (1964) The influence of the microflora on physical properties of soils. I. Effects associated with filamentous algae and fungi. Aust. J. Soil Res 2: 111#177;122 Bowker MA (2007) Biological Soil Crust Rehabilitation in Theory and Practice: An Underexploited Opportunity. Restoration Ecology 15 (1): 13#177;23

Bowker MA, Belnap J, Davidson DW, Phillips SL (2005) Evidence for micronutrient limitation of biological soil crusts: Importance to arid-lands restoration. Ecological Applications 15(6): 1941#177;1951

Brostoff WN, Rasoul Sharifi M, Rundel PW (2005) Photosynthesis of cryptobiotic soil crusts in a seasonally inundated system of pans and dunes in the western Mojave Desert, CA: Field studies. Flora 200: 592-600

Büdel B (2005) Microorganisms of Biological Crusts on Soil Surfaces. Soil Biology, Volume 3 Microorganisms in Soils: Roles in Genesis and Functions. ed. by F. Buscot and A. Varma: 307+323

Courault M, D'herbès JM , Valentin C (1990) Le bassin versant de Sama Dey. Premières observations pédologiques et phytoécologiques.Programme Hapex-Sahel. ORSTOM: pp31

DeBano LF (1981) Water repellent soils: A state-of-the-art. United States Department of Agriculture, Forest Service, General Technical Report, PSW-46, Berkeley, California: pp21

Défarge C, Malam Issa O, Trichet J (1999) Apports du cryo-microscope électronique à balayage à émission de champ à l'étude des matières organiques et des relations organominérales naturelles II- Application aux croûtes microbiotiques des sols. CR Acad Sci II A 328: 591+597

De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from Cyanobacteria and their possible applications. FEMS Microbiology Reviews 22: 151#177;175 Dekker LW, Ritsema CJ (1994) How water moves in a water repellent sandy soil 1. Potential and actual water repellency. Water resources research 30(1): 2507#177;2517 Dekker LW, Ritsema CJ (2000) Wetting patterns and moisture variability in water repellent dutch soil. Journal of hydrology 231+232: 148#177;164

Doerr SH, Shakesby RA, Walsh RPD (1996) Soil water repellency variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Agueda basin, Portugal. Catena 27: 25#177;47.

Doerr SH (1998) Short communication: On standardizing the `water drop penetration time' and the `molarity of an ethanol droplet' techniques to classify soil hydrphobicity: a case study using medium textured soils. Earth Surf. Process. Landforms 23: 663#177;668

Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews 51: 33#177;65

Dulieu D, Gaston A, Darley J (1977) La dégradation des p1turages de la région N'Djamena (République du Tchad) en relation avec la présence de Cyanophycées psammophiles ~ étude préliminaire. Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux 30: 181190

Eldridge DJ (1993) Cryptogam cover and soil surface condition: effects on hydrology on a semiarid woodland soil. Arid Soil Research and Rehabilitation 7: 203#177;217

Eldridge DJ, Tozer ME, Slangen S (1997) Soil hydrology is independent of microphytic crust cover: Further evidence from wooded semiarid Australian rangeland. Arid Soil Res. Rehab 11: 113#177;126

Eldridge DJ, Leys JF (2003) Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. Journal of Arid Environments 53: 457#177;466 Falchini L, Sparvoli E, Tomaselli L (1996) Effect of Nostoc (Cyanobacteria) inoculation on the structure and stability of clay soils. Biol Fert Soils 23:346+352

Fattom A, Shilo M (1984) Hydrophobicity as an adhesion mechanism of benthic Cyanobacteria. Applied and Environmental Microbiology 47: 135#177;143

Fox DM, Darboux F, Carrega P (2007) Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrological Processes 21: 2377#177;2384

Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. Journal of Phycology 32: 774#177;782

Garcia-Pichel F, Lopez-Cortes A, Nubel U (2001) Phylogenetic and Morphological Diversity of Cyanobacteria in Soil Desert Crusts from the Colorado Plateau. Appl. Environ. Microbiol 67(4): 1902#177;1910

Hahn A, Kusserow H (1998) Spatial and temporal distribution of algae in soil crusts in the Sahel of W Africa: Preliminary results. Willdenowia 28: 227#177;238

Hu C, Liu Y, Paulsen BS, Petersen D, Klaveness D (2003) Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilisation of fine sand grain. Carbohyd Polym 54: 33#177;4

Kidron GJ, Yaalon DH, Vonshak A (1999) Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Science 164:18#177;27

Leelamanie DAL, Karube J (2007) Effects of organic compounds, water content and clay on the water repellency of a model sandy soil. Soil Science and Plant Nutrition 53:711 719

Leelamanie DAL, Karube J, Yoshida A (2008) Characterizing water repellency indices: Contact angle and water drop penetration time of hydrophobized sand. Soil Science and Plant Nutrition 54: 179#177;187

Le Barbe L, Lebel T (1997) Rainfall climatology of the HAPEX-Sahel region during the years 1950-1990. Journal of Hydrology 188#177;189: 43#177;73

Malam Issa O (1999) Etude du rôle des croûtes microbiotiques dans les sols de deux ecosystèmes saheliens (jachères et brousse tigree) au Niger: micromorphologie, proprietes physiques et biogeochimiques. Thèse doctorat. Universite d'Orleans, France: pp276

Malam Issa O, Trichet J, Dfarge C, Coute A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37: 175#177;196

Malam Issa O, Le Bissonnais Y, Defarge C, Trichet J (2001a) Role of a microbial cover on structural stability of a sandy soil in Sahelian part of western Niger. Geoderma 101:15 30

Malam Issa O, Stal JL, Defarge C, Coute A, Trichet J (2001b) Nitrogen fixation by microbial crusts from desiccated Sahelian soils (Niger). Soil Biol Biochem 33:1425#177;1428

Malam Issa O, Défarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, D'Acqui LP, Nordenberg S, Annerman M (2007) Effects of the inoculation of Cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290: 209#177;219

Malam Issa O, Defarge C, Trichet J, Valentin C, Rajot JL (2008) Microbiotic soil crusts in the Sahel of Western Niger and their influence on Soil Porosity and water dynamics. CATENA: pp23

Maqubela MP, Mnkeni PNS, Malam Issa O, Pardo MT, D'Acqui LP (2009) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil 315:79#177;92

Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology 21: 121#177;130

Nisha R, Kaushik A, Kaushik CP (2007) Effect of cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138: 49#177;56

Orlovsky O, Dourikov M, Babaev A (2004) Temporal dynamics and productivity of biogenic soil crusts in the central Karakum desert, Turkmenistan. Journal of Arid Environments 56: 579#177;601

Perez FL (1997) Microbiotic crusts in the high equatorial Andes, and their influence on paramo soil. Catena 31:173#177;198

Seghieri J, Galle S, Rajot JL (1994) La brousse tigree dans le sahel nigerien : Étude de la cofluctuation du stock hydrique et de la vegetation annuelle. Xeme njournees hydrologiques - Orstom: 123#177;141

Smith SM, Abed RMM, Garcia-Pichel DF (2004) Biological Soil Crusts of Sand Dunes in Cape Cod National Seashore, Massachusetts, USA. Microbial Ecology 48: 200#177;208 Tirkey J, Adhikary SP (2005) Cyanobacteria in biological soil crusts of India. CurrenT Science 89(3): 515#177; 521

Verrecchia E, Yair A, Kidron GJ, Verrecchia K (1995) Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy softs, north-western Negev Desert, Israel. journal of Arid Environments 29: 427#177;137

Vaishampayan A , Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial Biofertilizers in Rice Agriculture. The Botanical Review 67(4): 453+516

Warren SD (2001) Biological soil crusts and hydrology in north americain deserts In Biological Soil Crusts: Structure, Function, and Management, Belnap J, Lange OL (eds). Springer-Verlag, Berlin Heidelberg: 349#177;360

West NE (1990) Structure and function of microphytic soil crust in wildland ecosystems of arid to semiarid regions. Advanced Ecology Research 20: 179#177;223 Williams JD, Dobrowolski JP, West NE (1999) Microbiotic crust influence on Unsaturated hydraulic conductivity. Arid Soil Res. Rehab 13: 145#177;154

Woche SK, Goebel MO, Kirkham MB, Horton R, Van Der Ploeg RR, Bachmann J (2005) Contact angle of soils as affected by depth, texture, and land management. European Journal of Soil Science 56: 239#177;251

Zhang YM, Wang HL, Wang W.K, Zhang DY (2006) The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of northwestern China. Geoderma 132: 441#177;449

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Les esprits médiocres condamnent d'ordinaire tout ce qui passe leur portée"   François de la Rochefoucauld