ANNEXE 4 : Estimation du modèle à effets
fixes
Fixed-effects (within) regression
Group variable: PAYS
|
|
|
|
|
|
|
R-sq: within = 0.9075
|
between = 0.1235 overall =
0.1346
1.615932 .1184879
-.0037606 .0020026
-.0050141 .002588
.3558061 .0383642
.0001432 .0000853
-3.726272 .7349022
|
Number of obs =
Number of groups =
Obs per group: min =
avg = max =
13.64 0.000 1.38123
-1.88 0.063 -.0077274
-1.94 0.055 -.0101404
9.27 0.000 .2798141
1.68 0.096 -.0000258
-5.07 0.000 -5.181972
|
|
corr(u_i, Xb) = -0.0674
|
.99848863 (fraction
|
F(5,115) =
Prob > F =
|
|
128 8 16 16.0
16 225.72 0.0000 Livid
Coef. Std. Err.
t P>|t| [95% Conf.
Interval]
LPIBR
TIR
TCivi
1.850634
.0002061
.0001122
.4317981
.0003122
-2.270572
sigma_u
sigma_e
rho
1.7455364
.06791137
of variance due to u_i)
F test that all u_i=0: F(7, 115) = 10346.57
Prob > F = 0.0000
ANNEXE 5 : Estimation du modèle à effets
aléatoires
TINFL
Random-effects GLS regression Number of obs =
128
LCRED
Group variable: PAYS Number of groups =
8
_cons
R-sq: within = 0.9075 Obs per group: min =
16
between = 0.1235 avg = 16.0
overall = 0.1346 max = 16
Wald chi2(5) = 1164.94
corr(u_i, X) = 0 (assumed) Prob >
chi2 = 0.0000
|
|
|
z P>|z|
|
|
|
|
|
|
|
|
|
|
|
|
1.615012
|
.1165137
|
13.86 0.000
|
|
1.38665
|
|
|
-.0037575
|
.0019715
|
-1.91 0.057
|
|
-.0076215
|
|
LMd
|
Coef.
-.0050142
|
Std. Err.
.0025478
|
-1.97 0.049
|
|
[95% Conf.
-.0100078
|
|
|
.3560079
|
.0377562
|
9.43 0.000
|
|
.2820071
|
|
LPIBR
|
.000143
|
.000084
|
1.70 0.089
|
|
-.0000216
|
|
TIR
TINFL
|
-3.720669
|
1.148664
|
-3.24 0.001
|
|
-5.972009
|
|
LCRED
|
|
|
|
|
|
|
TCM
|
|
|
|
|
|
|
_cons
|
.99929963
|
(fraction
|
of variance due
|
to
|
|
|
Interval] 1.843375 .0001066
-.0000207 .4300087 .0003076
-1.469328
2.5652333
.06791137
rho
u_i)
Analyse économétrique de la demande de
monnaie dans l'Uemoa Page 73
ANNEXE 6 : Statistiques descriptives des variables
|
|
|
|
|
|
|
LMd
|
|
|
1.759439
|
5.56
|
|
|
|
|
|
|
1.859841
|
5.980562
|
|
|
|
|
|
|
.2125112
|
7.037234
|
|
|
|
|
|
6.445117
|
.4136603
|
5.519
|
|
|
|
|
|
|
.4321647
|
5.5935
|
|
|
|
|
|
|
|
6.25593
|
|
|
|
|
|
6.755672
|
4.059089
|
-5.145
|
|
|
|
|
|
|
|
5.144125
|
|
|
|
|
|
|
3.913658
|
-5.364891
|
|
|
|
|
|
|
2.731236
|
-3.503
|
|
|
|
|
|
|
.3914748
|
1.595313
|
|
|
|
|
|
|
2.706381
|
-3.745039
|
|
|
|
|
|
2.129922
|
.3532935
|
.821
|
|
|
|
|
|
|
.270632
|
1.529625
|
|
|
|
|
|
|
|
1.421297
|
|
|
|
|
|
549.0301
|
91.38989
|
448.346
|
|
|
|
|
|
|
0
|
549.0301
|
|
|
|
|
|
|
91.38989
|
448.346
|
|
|
|
Variable
Mean
Std. Dev.
Min
Max
Observations
overall
7.48767 2
12.397
N =
between
11.95088
n =
7.960109
T=
LPIBR
overall
7.196
N =
between
7.050813
n =
.08004 72
6.62293
T=
N =
between
1.146636
n =
within
T=
TINFL
overall
2.39371 1
11.305
N =
between
2.845437
n =
within
11.53965
T=
N =
n =
T=
N =
n =
T=
ANNEXE 7 : Estimation du modèle par Pays
(Régression stepwise par pays)
within
-Cote d'ivoire
begin with full model
within
p < 0.2000 for all terms in model
TIR
overall
18.386
Linear regression Number of obs = 16
8.710062
F( 5, 10) = 476.86
16.43161
Prob > F = 0.0000
R-squared = 0.9884
Root MSE = .02249
LCRED
|
|
overall
|
|
|
2.725
|
|
|
between
|
|
t P>|t|
|
2.353625
|
|
|
within
-1.622802
|
.3501651
|
.2454083
-4.63 0.001
|
2.766297
|
TCM
|
|
overall
-.003578
|
.001358
|
-2.63 0.025
|
737.452
|
|
|
between
-.0148343
|
.0032842
|
-4.52 0.001
|
549.0301
|
|
|
within
2.001119
|
.1267835
|
15.78 0.000
|
737.452
|
|
|
.0003474
|
.0001151
|
3.02 0.013
|
|
|
|
14.41271
|
2.182312
|
6.60 0.000
|
|
-Sénégal
|
|
|
|
|
LMd
Coef.
Std. Err.
|
|
|
|
LPIBR
|
|
|
TIR
Linear regression
|
|
|
|
|
TINFL
|
|
|
|
p =
|
LCRED
|
|
|
|
p =
|
TCM
|
|
|
|
|
_cons
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
2.114425
|
.0926542
|
22.82
|
|
|
|
-.0060259
|
.0017973
|
-3.35
|
|
|
|
-.0113743
|
.0030847
|
-3.69
|
|
|
LMd
|
Coef.
-6.999458
|
Std. Err.
.6363397
|
-11.00
|
|
128
8
16
128
8
16
128
8
16
128
8
16
128
8
16
128
8
16
Robust
[95% Conf. Interval]
-2.403019 -.8425859
-.0066038 -.0005521
-.0221519 -.0075166
1.718627 2.28361
.000091 .0006038
9.550218 19.2752
0.9006 >= 0.2000 removing LCRED
0.8147 >= 0.2000 removing TCM
Number of obs = 16
F( 3, 12) = 270.17
Prob > F = 0.0000
R-squared = 0.9910
Root MSE = .01977
Robust
P>|t| [95% Conf. Interval]
0.000 1.912549 2.316301
0.006 -.0099418 -.00211
0.003 -.0180953 -.0046534
0.000 -8.385923 -5.612993
Analyse économétrique de la demande de
monnaie dans l'Uemoa Page 74
-Bénin
p = 0.5769 >= 0.2000 removing
TINFL p = 0.2256 >= 0.2000 removing
LPIBR
Linear regression Number of obs = 16
F( 3, 12) = 163.94
Prob > F = 0.0000
R-squared = 0.9720
Root MSE = .03457
|
|
|
|
|
|
|
|
|
|
t
|
P>|t|
|
|
|
|
1.38302
|
.0897872
|
15.40
|
0.000
|
1.18739
|
|
|
.0066689
|
.0028274
|
2.36
|
0.036
|
.0005086
|
|
|
.0009832
|
.0001489
|
6.60
|
0.000
|
.0006586
|
|
|
3.305528
|
.2776543
|
11.91
|
0.000
|
2.700571
|
|
-Guinée Bissau
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Linear regression
|
|
|
Number of
|
|
|
|
|
|
|
|
|
|
|
|
Prob > F
|
|
|
|
|
|
R-squared
|
|
|
|
|
|
Root MSE
|
|
|
LCRED
TIR
TCM
|
p = 0.5853 >= 0.2000
removing
|
|
t
|
P>|t|
|
|
|
_cons
|
.4581573
|
.0482606
|
9.49
|
0.000
|
.3530065
|
|
|
-.0099872
|
.0027621
|
-3.62
|
0.004
|
F( 3,
-.0160052
|
|
|
.0009594
|
.0002267
|
4.23
|
0.001
|
.0004654
|
|
|
4.822667
|
.184092
|
26.20
|
0.000
|
4.421565
|
|
p = 0.2056 >= 0.2000 removing
LPIBR
-Mali
Robust
LMd
Coef.
Std. Err.
TINFL
LMd
Coef.
Robust
Std. Err.
LCRED
TCM
_cons
p = 0.9733 >= 0.2000 removing
TCM
p = 0.6849 >= 0.2000 removing
TIR
[95% Conf.
obs = 16
12) = 41.98
= 0.0000 = 0.9382 = .06659
[95% Conf.
Interval]
.563308
TIR
-.0039692
.0014535
5.223769
Linear regression Number of obs = 16
F( 3, 12) = 123.25
Prob > F = 0.0000
R-squared = 0.9517
Root MSE = .03961
|
|
|
t
|
P>|t|
|
|
|
|
.9473287
|
.2366642
|
4.00
|
0.002
|
.4316817
|
|
LMd
|
Coef.
.5087937
|
Std. Err.
.1607008
|
3.17
|
0.008
|
[95% Conf.
.1586568
|
|
|
-.0065552
|
.0046069
|
-1.42
|
0.180
|
-.0165927
|
|
LPIBR
|
-.3562018
|
1.227356
|
-0.29
|
0.777
|
-3.030381
|
|
Interval]
1.578649 .0128293 .0013077
3.910485
Robust
Interval]
1.462976 .8589306 .0034824
2.317978
Analyse économétrique de la demande de monnaie dans
l'Uemoa Page 75
-Niger
p = 0.6540 >= 0.2000 removing
TIR p = 0.4819 >= 0.2000 removing
TCM
Linear regression Number of obs = 16
F( 3, 12) = 414.58
Prob > F = 0.0000
R-squared = 0.9800
Root MSE = .04561
|
|
|
|
|
|
|
|
t
|
P>|t|
|
|
|
|
2.041676 .3185081
|
6.41
|
0.000
|
1.347707
|
|
|
.279889 .1573747
|
1.78
|
0.101
|
-.0630012
|
|
|
-.0063083 .0020757
|
-3.04
|
0.010
|
-.0108308
|
|
|
-6.961984 1.735442
|
-4.01
|
0.002
|
-10.74319
|
|
-Burkina Fasso
|
|
|
|
|
Linear regression
|
|
|
Number of obs
|
|
|
|
|
|
|
|
|
|
Prob > F
|
|
|
|
|
R-squared
|
|
LMd
Coef. Std. Err.
|
|
|
[95% Conf.
Root MSE
|
|
LPIBR
LCRED
|
|
|
|
|
|
TINFL
|
|
t
|
P>|t|
|
|
|
_cons
|
2.263045 .1048155
|
21.59
|
0.000
|
2.036605
|
|
|
-.0054238 .0029933
|
-1.81
|
0.093
|
-.0118904
|
|
|
-2.882467 .6990282
|
-4.12
|
0.001
|
F( 2, 13)
-4.392626
|
|
p = 0.6701 >= 0.2000 removing
LCRED p = 0.2207 >= 0.2000 removing
TIR p = 0.3701 >= 0.2000 removing
TCM
-Togo
Robust
Robust
LMd
Coef. Std. Err.
LPIBR
TINFL
_cons
p = 0.3613 >= 0.2000 removing
TIR
p = 0.4784 >= 0.2000 removing
TINFL
Interval]
2.735646
-.0017858
-3.18078
= 16 = 321.95 = 0.0000 =
0.9680 = .05277
[95% Conf.
Interval]
2.489486
-1.372309
Linear regression Number of obs = 16
F( 3, 12) = 248.62
Prob > F = 0.0000
R-squared = 0.9781
Root MSE = .03416
|
|
|
t
|
P>|t|
|
|
|
|
1.051487
|
.2277631
|
4.62
|
0.001
|
.5552338
|
|
LMd
|
Coef.
-.0002008
|
Std. Err.
.0001044
|
-1.92
|
0.078
|
[95% Conf.
-.0004283
|
|
|
.6585858
|
.034872
|
18.89
|
0.000
|
.5826061
|
|
LPIBR
|
-1.185514
|
1.378253
|
-0.86
|
0.407
|
-4.18847
|
|
.6227791
.0010428
Robust
Interval]
1.54774 .0000266 .7345654
1.817442
Analyse économétrique de la demande de monnaie dans
l'Uemoa Page 76
Analyse économétrique de la demande de monnaie dans
l'Uemoa Page 77
Table des matières
DEDICACES ET REMERCIEMENTS i
SOMMAIRE ii
LISTES DES ANNEXE, GRAPHIQUES ET TABLEAUX iii
LISTES DES SIGLES ET ABRÉVIATIONS v
INTRODUCTION GENERALE 1
|