WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Les différentes notions d'inversibilité et applications

( Télécharger le fichier original )
par Adil BOUHRARA
Université de Fès - Master mathématiques informatique et applications 2012
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Bibliographie

[1] J.J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996) 367-381.

[2] Guifen Zhuang, and Jianlong Che, and Dragana S. Cvetkovic-Ilic, and Yimin Wei. Additive Property of Drazin Invertibility of Elements in a Ring.

[3] M. Z. Nashed, Generalized Inverses and Applications, Academic Press, New York, 1976.

[4] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996) 3417-3424.

[5] J.Ph.Labrouse.Inverses Generalises d'operateurs non Bornes

[6] Enrico Boasso. On the Moore-Penrose Inverse in C*-algebras.Vol. 21, Num. 2, 93 106 (2006)

[7] J. J. Koliha,Some convergence theorems in Banach algebras, Pacific J. Math. 52 (1974),467-473.

[8] Harte, R., Mbekhta, M., On generalized inverses in C*-algebras, Studia Math., 103 (1992), 71 77.

[9] Harte, R., Mbekhta, M., On generalized inverses in C*-algebras II, Studia Math., 106 (1993), 129 138.

[10] Mbekhta, M., Conorme et inverse generalise dans les C*-algebres, Canadian Math. Bull., 35 (4) (1992), 515 - 522.

[11] J. J. Koliha and V. Rakocevic, Continuity of the Drazin inverse II , Studia Math.,

[12] V. Rako cevic, Moore-Penrose inverse in Banach algebras, Proc. Royal Irish Acad. 88A (1988), 57-60.

[13] J.J.Koliha and T.D.Than.Closed semsitable operators and the asynchronous exponential growth of C0-semi groupe.preprint.

[14] V. Rako cevic, Continuity of the Drazin inverse, J. Operator Theory,

[15] J.J. Koliha and P. Patricio, Elements of rings with equal spectral idem- potents, J. Aust. Math. Soc. 72 (2002) 137-152.

[16] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd edition, Wiley, New York, 1980.

[17] A. Ben-Israel and T. N. E. Greville, Generalized Inverses : Theory and Applications, Wiley-Interscience, New York, 1974.

[18] M. P. Drazin, Pseudo-inverse in associative rings and semigroups

[19] R. E. Harte, Spectral projections, Irish Math. Soc. Newsletter., 11 (1984), 10 - 15.

[20] R. E. Harte, On quasinilpotents in rings, PanAm. Math. J. 1 (1991), 10 - 16.

[21] M. Z. Nashed and Y. Zhao, The Drazin inverse for singular evolution equations and partial differential equations, World Sci. Ser. Appl. Anal. 1 (1992), 441- 456

[22] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd edition, Wiley, New York, 1980.

[23] J. J. Koliha THE DRAZIN AND MOORE-PENROSE INVERSE IN C*-ALGEBRAS

[24] Boulmaarouf, Z., Fernandez Miranda, M., Labrousse, J.-Ph. 1997 An algorithmic approach to orthogonal projections and Moore-Penrose inverses, Numer. Funct. Anal. Optim. 18, 55-63.

[25] Groetsch, C. W. 1975 Representation of the generalized inverse, J. Math. Anal. Appl. 49, 154-157.

[26] Showalter, D. 1967 Representation and computation of the pseudoinverse, Proc. Amer. Math. Soc. 18, 584-586.

[27] J. J. Koliha and Trung Dinh Tran. The Drazin inverse for closed linear operators

[28] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, London, 1979

[29] S. R. Caradus, Operator Theory of Generalized Inverse, Queen's Papers in Pure and Appl. Math. 38, Queen's University, Kingston, Ontario, 1974.

[30] M. Z. Nashed, Inner, outer and generalized inverses in Banach and Hilbert spaces, Numer. Funct. Anal. Optim. 9 (1987), 261-325.

[31] YIHUA LIAO and JIANLONG CHEN and and JIAN CUI Cline's formula for the generalized Drazin inverse.

[32] Hïam Brezis. Analyse Fonctionnelle. Théorie et Applications.

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy





Changeons ce systeme injuste, Soyez votre propre syndic





"I don't believe we shall ever have a good money again before we take the thing out of the hand of governments. We can't take it violently, out of the hands of governments, all we can do is by some sly roundabout way introduce something that they can't stop ..."   Friedrich Hayek (1899-1992) en 1984