Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp

Home | Publier un mémoire | Une page au hasard


Contribution à  l'optimisation complexe par des techniques de swarm intelligence

( Télécharger le fichier original )
par Lamia Benameur
Université Mohamed V Agdal Rabat Maroc - Ingénieur spécialité : informatique et télécommunications 0000

précédent sommaire suivant

Références Bibliographiques

1. Aardal K. I., Hipolito A., Van Hoesel S., Jansen B., (1995). A Branch-and-Cut Algorithm for the Frequency Assignment Problem, Technical Report Annex T-2.2.1 A, CALMA project, T.U. Eindhoven and T.U. Delft.

2. Akcayol M. A., Cetin A., Elmas C., (2002). An Educational Tool for Fuzzy Logic-Controlled BDCM, IEEE Transactions On Education, Vol. 45, No. 1, pp. 33-42.

3. Alami J., Benameur L., El Imrani A., (2007). Fuzzy clustering based parallel cultural algorithm. International Journal of Soft Computing Vol.2(4), 562-571.

4. Alami J., Benameur L., El Imrani A. (2009) A Fuzzy Clustering based Particle Swarms for Multimodal Function Optimization. International Journal of Computational Intelligence Research, ISSN 0974-1259. Vol.5, No.2 (2009), pp. 96-107.

5. Alami J., El Imrani A., Bouroumi A., (2007). A multipopulation cultural algorithm using fuzzy clustering. In journal of Applied Soft Computing Vol.7 (2), 506-519.

6. Alami J., El Imrani A., (2006). A Hybrid Ants Colony Optimization for Fixed-Spectrum Frequency Assignment Problem, Colloque International sur l'Informatique et ses Applications IA 2006, 231-235, Oujda, Maroc.

7. Alami J., El Imrani A., (2007). Using Cultural Algorithm for the Fixed-Spectrum Frequency Assignment Problem. in the Journal of Mobile Communications.

8. Allenson R., (1992). Cenetic Algorithm with Gender for Multi-Function Optimisation, TR. EPCC-SS92-01, Edinburgh Parallel Computing Center, Edinburgh, Scotland.

9. Alvarez-Benitez J. E., Everson R.M., Fieldsend J. E. (2005). A MOPSO algorithm based exclusively on pareto dominance concepts. In Third International

Conference on Evolutionary Multi-Criterion Optimization, EMO2005, pp 459- 473, Guanajuato, México, LNCS3410, Springer-Verlag.

10. Amat J.L., Yahyaoui G.,(1996). Techniques avancées pour le traitement de l'information. Cépadués Editions.

11. Arias M. A. V, Pulido G. T. , C. A. C. Coello (2005). A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer. In Proceedings of the 2005 IEEE Swarm Intelligence Symposium, pp 22-29, Pasadena,California, USA, June.

12. Bäck T., Hammel U., Schweffel F-P., (1997). Evolutionary Computation : Comments on the history and current state. IEEE transactions on Evolutionary Computation, 1(1), 3-17.

13. Bartz T.B., Limbourg P., Parsopoulos K. E., Vrahatis M. N., Mehnen J., Schmitt K., (2003). Particle swarm optimizers for pareto optimization with enhanced archiving techniques. In Congress on Evolutionary Computation (CEC'2003), volume 3, pages 1780-1787, Canberra,Australia,December.

14. Baumgartner U., Magele Ch., Renhart W., (2004). Pareto optimality and particle swarm optimization. IEEE Transactions on Magnetics, 40(2) :1172-1175, March.

15. Beasley D., Bull D.R., Martin R.R., (1993 ). A sequential niche technique for multimodal function optimization. Evolutionary Computation 1(2), 101-125.

16. Beckers R., Deneubourg. J.L. Goss. S., (1992). Trails and U-turns in the selection of the shortest path by the ant Lasius Niger. Journal of Theoretical Biology, vol. 159, pp. 397-415.

17. Benameur L., Alami J., Loukdache A., El Imrani A., (2007). Particle Swarm Based PI Controller for Permanent Magnet Synchronous Machine. Journal of Engineering and Applied Sciences 2 (9) : 1387-1393.

18. Benameur L., Alami J., El Imrani A. (2009a). Frequency Assignment Problem Using Discrete Particle Swarm model. International Conference on Multimedia Computing and Systems ICMCS/IEEE 09. Avril 02-04 Ouarzazate.

19. Benameur L., Alami J., El Imrani A. (2009b). A New Discrete Particle Swarm model for the Frequency Assignment Problem. In proced. of IEEE/AICCSA 2009, pp. 139-144. Rabat, Morocco, May 10-13.

20. Benameur L., Alami J., El Imrani A., (2009c). A New Hybrid Particle Swarm Optimization Algorithm for Handling Multiobjective Problem Using Fuzzy

Clustering Technique. In proced. of the International Conference on Computational Intelligence, Modelling and Simulation, Brno,czech republic : 48-53.

21. Benameur L., Alami J., El Imrani A., (2009d). Using fuzzy clustering Techniques to improve the performance of a multiobjective particle swarm optimizer.International Journal of Computational Science 3(4) : 436-455. .

22. Benameur L., Alami J., El Imrani A., (2010). A hybrid discrete particle swarm algorithm for solving the fixed-spectrum frequency assignment problem. International Journal of Computational Science and Engineering. 5(1) :68-73.

23. Bezdek J. C., (1981). Pattern recognition with fuzzy objective function algorithms. (Plenum Press, New York).

24. Bezdek J. C., (1992). On the relationship between neural networks, pattern recognition and intelligence. International journal of approximate reasoning, (6), 85-107.

25. Bezdek K., (1994). On affine subspaces that illuminate a convex set, Contributions to Alg. and Geom. 35/1, 131-139.

26. Bouroumi A., Limouri M., Essaid A., (2000). Unsupervised fuzzy learning and cluster seeking. Intelligent Data Analysis journal 4 (3-4), 241-253.

27. Brits R., Engelbrecht A., Van den Bergh F., (2002a). Solving systems of unconstrained equations using particle swarm optimization. Proceedings of the IEEE Conf. on Systems, Man, and Cybernetics, Tunisa, Vol.3, no.pp.6.

28. Brits R., Engelbrecht A., Van den Bergh F., (2002b). A niching particle swarm optimizer. Wang, L., Tan, K.C., Furuhashi, T., Kim, J.H., Yao, X., eds., Proceedings of the 4th Asia-Pacific Conf. on Simulated Evolution and Learning, Vol. 2, (Singapore) 692-696.

29. Brits R., Engelbrecht A., van den Bergh F.,(2007). Locating multiple optima using particle swarm optimization, Applied Mathematics and Computation, 189, pp 1859-1883.

30. Charnes A., Cooper W., (1961). Management Models and Industrial Applications of Linear Programming, vol 1, John Wiley, New-york.

31. Cheng R-H., Yu C. W., Wu T-K., (2005). A Novel Approach to the Fixed Channel Assignment Problem. Journal of Information Science and Engineering 21, 39-58.

32. Chow C.k. , Tsui H.t., (2004). Autonomous agent Response learning by a multi-species particle swarm optimization. In Congress on Evolutionary Computation (CEC'2004), volume 1, pp 778-785, Portland, Oregon,USA, June. IEEE Service Center.

33. Chung. C. J., (1997). Knowledge Based Approaches to Self Adaptation in Cultural Algorithms. PhD thesis, Wayne State University, Detroit, Michigan.

34. Coello C. A.C., (1995). Multiobjective design Optimization of Counterweight Balancing of a Robot Arm using genetic Algorithm, Seventh International Conference on Tools with Artificial Intelligence, p. 20-23.

35. Coello C. A.C., (1996). An Empirical study of Evolutionary Techniques for Multiobjective Optimization in Engineering Design, Ph.D. Thesis, Department of Computer sciences, Tulane University, New Orleans.

36. Coello C. A. C., (1999). A comprehensive survey of evolutionary based multiobjective optimization techniques. Knowledge and Information Systems. An International Journal, 1(3) :269-308, August.

37. Coello C. A.C., Pulido G.T., (2001). Multiobjective Optimization using a Micro-genetic Algorithm, In proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2001), pp. 274-282, San Francisco, California.

38. Coello C.A.C.,.Veldhuizen D.A.V, Lamont G. B, (2002). Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, NewYork,May.

39. Coello C. A. C., Lechuga M. S, (2002). MOPSO : A proposal for multiple objective particle swarm optimization. InCongressonEvolutionary Computation (CEC'2002), volume 2, pp. 1051-1056, Piscataway, New Jersey, May.

40. Coello, C. A., Pulido, G. T., Lechuga, M. S, (2004). Handling Multiple Objectives with Particle Swarm Optimization, IEEE Transactions on Evolutionary Computation 8(3), pp. 256-279.

41. Colette Y., Siarry P., (2002). Optimisation multiobjectif, Edition Eyrolles.

42. Corne D.W, (2001). PESA II : Region-based Selection in Evolutionary Multiobjective Optimization, In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2001), pp. 283-290, San Francisco, California.

43. Crompton W., Hurley S., Stephens N. M., (1994). A parallel genetic algorithm for frequency assignment problems, in Proceedings of the IMACS, IEEE Conference on Signal Processing, Robotics and Neural Networks, Lille, France, pp. 81 -84.

44. Deb K., Goldberg D. E. (1989). An investigation of niche and species formation in genetic function optimization. In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pp. 42-50, San Mateo, California, June. George Mason University, Morgan Kaufmann Publishers.

45. Deb K.,(1999). Multi-objective genetic algorithms : Problem difficulties and construction of test problems. Evolutionary Computation Journal, 7(3), pp. 311-338.

46. Deb, K., (2000). A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multiobjective Optimization : NSGA II, Parallel problem Solving form Nature-PPSN VI, Springer lecture Notes in computing Science, p. 849-858.

47. Deb, K., (2001). Multiobjective Optimization Using Evolutionary Algorithms, John Wiley and Sons.

48. Deb K., Jain S., (2002). Running Performance Metrics for Evolutionary Multi-objective Optimization, Tech. rep, KanGAL Report.

49. Deb K., Pratap A., Agarwal S., Meyarivan T., (2002). A fast and elitist multiobjective genetic algorithm : NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), pp. 182-197, April.

50. De Castro L. N, Von Zuben F., (1999). Artificial Immune Systems: Part I : Basic Theory and Applications. Technical Report TR-DCA 01/99, Department of Computer Engineering and Industrial Automation, School of Electrical and Computer Engineering, State University of Campinas, Brazil.

51. De Castro L. N, Von Zuben F., (2000). Artificial Immune Systems : Part II : A Survey of Applications. Technical Report DCA-RT 02/00, Department of Computer Engineering and Industrial Automation, School of Electrical and Computer Engineering, State University of Campinas, Brazil.

52. De Castro L. N., Timmis J., (2002). An artificial Immune Network for multimodal function optimization. The IEEE World Congress on Computational Intelligence.

53. De Falco I., Della Cioppa A., Tarantino E., (2007). Facing classification problems with Particle Swarm Optimization. Applied Soft Computing 7, pp. 652-


54. Deneubourg J. L., Goss S. (1989). Collective patterns and decision-making, Ethology and Evolution, (1), pp. 295-311.

55. Deneubourg J.L., Pasteels J.M., Verhaeghe J.C. (1983). Probabilistic behaviour in ants : A strategy of errors, Journal of Theoretical Biology, 105, pp. 259-271.

56. DiPierro F., Khu S., Savi D., (2007). An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization, IEEE Transactions on Evolutionary Computation 11(1), pp. 17-45.

57. Duque-Anton M., Kunz D., Ruber B., (1993). Channel assignment for cellular radio using simulated annealing. IEEE Trans.Vehicular Technol.42, pp. 14 -21.

58. Durham W. H., (1994). Co-evolution : Genes, Culture, and Human Diversity. Stanford University Press, Stanford, California.

59. Eberhart, R. Kennedy, J. (1995). New optimizers using particle swarm theory. In Proceedings of the 6th International Sysmposium on Micro Machine and Human Science, pp. 39-43.

60. El Imrani A.A., (2000). Conception d'un Algorithme Génétique Coévolutif. Application à l'optimisation des Histoires Thermiques. Thèse de Doctorat d'Etat. Faculté des Sciences, Rabat.

61. El Imrani A. A., Bouroumi A., Zine El Abidine H., Limouri M., Essaïd A., (1999a). A Fuzzy Clustering-based Niching Approach to Multimodal Function Optimization. Journal Cognitive Systems research, Volume (1) issue (2) 2000, pp. 119-133.

62. El Imrani A. A., Bouroumi A., Limouri M., Essaïd A., (1999b). A Coevolutionary Genetic Algorithm using Fuzzy Clustering. International Journal of Intelligent Data Analysis, Vol 4(2000), pp. 183-193.

63. Farina M., Amato P., (2004). A Fuzzy Definition of Optimality for Many-criteria Optimization Problems, IEEE Transactions on Systems, Man and Cybernetics, Part A 34 (3), pp. 315-326.

64. Fieldsend J. E., Singh S., (2002). A multiobjective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. In Proceedings of the 2002 U.K. Workshop on Computational Intelligence, pp. 37-44,

Birmingham, UK, September.

65. Fogel D. B., (1995). A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems, Simulation, pp. 397-403, June 1995.

66. Fogel, L. J., Owens, A. J., Walsh, M. J., (1966). Artificial Intelligence through Simulated Evolution.

67. Fonseca C.M., Fleming P.J, (1993). Genetic Algorithms for Multiobjective Optimization : formulation, discussion and Generalization, In Proceeding of the Fifth International Conference on Genetic Algorithms. San Mateo, California, pp. 416-423.

68. Forrest S., Javornik B., Smith R.E., Perelson A.S.,(1993). Using genetic algorithms to explore pattern recognition in the immune system, Evol. Comput. 1 (3) 191-211.

69. Fourman, (1985). Compaction of symbolic Layout using Genetic Algorithms. In Genetic Algorithms and their Applications : Proceedings of the First International Conference on Genetic Algorithm, pp. 141-153.

70. Funabiki N., Takefuji Y., (1992). A neural network parallel algorithm for channel assignment problems in cellular radio networks. IEEE Transactions on Vehicular Technology, Vol. 41, pp. 430-436.

71. Goldberg D. E., (1989a). Genetic Algorithms in search, optimization and machine learning. Addison-wesley Publishing Inc.

72. Goldberg D.E, (1989b). Sizing Populations for Serial and Parallel Genetic Algorithms, Proceedings of the Third International Conference on Genetic Algorithm, pp. 70-97, San-Mateo, California.

73. Goldberg D.E, Deb D., Horn H., (1992). Massive multiomodality and genetic algorithms, Ed. R. Manner, B. Manderick, parallel problem solving from nature 2, Brussels, pp. 37-46.

74. Goldberg D. E., Richardson J., (1987). Genetic algorithms with sharing for multimodal function optimization. Proceedings of the Second International Conference on Genetic Algorithms, pp. 41-49.

75. Goldberg D. E., Wang L., (1997). Adaptative niching via coevolutionary sharing. Quagliarella et al.(Eds.). Genetic Algorithms in Engineering and Computer Science (John Wiley and Sons, Ltd). pp. 21-38.

76. Goss S., Beckers R., Deneubourg J.L., Aron S., Pasteels J.M. (1990). How trail lying and trail following can solve foraging problems for ant colonies. In : Behavioural Mechanisms of Food Selection, R.N. Hughes ed., NATO-ASI Series, vol. G20, Berlin : Springer verlag.

77. Hale W. K., (1981). New spectrum management tools. Proceedings IEEE Int. Symp. Electromag. Compatibility, pp. 47- 53, Aug.

78. Ho S.L, Shiyou Y., Guangzheng N., Lo E. W.C., Wong H.C, (2005). A particle swarm optimization based method for multiobjective design optimizations. IEEE Transactions on Magnetics, 41(5), pp. 1756-1759, May.

79. Hoffmeyer J.,(1994). The Swarming Body. In I. Rauch and G.F. Carr, editors, Semiotics Around the World, Proceedings of the Fifth Congress of the International Association for Semiotic Studies, pp. 937-940.

80. Hofmeyr S.A., Forrest S., (1999). Immunity by Design : An Artificial Immune System, in : Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Morgan Kaufmann, San Francisco, CA, pp. 1289-1296.

81. Holland, J. H. , (1962). Outline for logical theory of adaptive systems. J. Assoc. Comput. March, 3, pp. 297-314.

82. Holland, J. H. , (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, MI.

83. Holland J.H., Holyoak K.J., Nisbett R.E., Thagard P.R., (1986). Induction : Processes of Inference, learning and discovery. MIT Press, Cambridge, MA, USA.

84. Hopfield J. J., (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, USA, pp. 2554-2558.

85. Horn J., Nafpliotis N., (1993). Multiobjective Optimization using the Niched Pareto Genetic Algorithm, Illigal TR. 93005, July.

86. Hu X. , Eberhart R, (2002). Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Congress on Evolutionary Computation (CEC'2002), volume 2, pp. 1677-1681, Piscataway, New Jersey, May.

87. Hu X., Eberhart R., Shi Y, (2003). Particle swarm with extended memory for multiobjective optimization. In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pp. 193-197, Indianapolis, Indiana,USA, April.

88. Hurley S., Smith D. H., Thiel S. U., (1997). FASoft : A system for discrete channel frequency assignment. Radio Science, vol. 32, no. 5, pp. 1921- 1939.

89. Ignizio J.P., (1981). The Determination of a Subset of Efficient Solutions via Goal Programming, Computing and Operations Research 3, pp. 9-16.

90. Ishibuchi H., Murata T., (1996). Multi-objective Genetic Local Search Algorithm. In Toshio Fukuda and Takesshi Furuhashi editors, Proceedings of the 1996 International conference on Evolutionary Computation, pp. 119-124, Nagoya, Japan.

91. Janson S., Merkle D., (2005). A new multiobjective particle swarm optimization algorithm using clustering applied to automated docking. In Maria J. Blesa, Christian Blum, Andrea Roli, and Michael Sampels, editors, Hybrid Metaheuristics, Second International Workshop, HM2005, pp. 128-142, Barcelona, Spain, August. Springer. Lecture Notes in ComputerScience Vol.3636.

92. Jedra M., (1999). Modèles connexionnistes temporels, Application à la reconnaissance des variétés de semences et à l'analyse de contexte des caractères arabes. Thèse de Doctorat d'Etat, Faculté des sciences, Rabat.

93. Kennedy J., Eberhart R. C., (1995). Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, pages 1942- 1948, Piscataway, New Jersey, 1995. IEEE Service Center.

94. Kennedy J., (2000). Stereotyping : Improving particle swarm performance with cluster analysis. Proceedings of the IEEE Congress on Evol. Comput. (San Diego, California, U.S.A.), pp. 1507-1512.

95. Kim J. S., Park S. H., Dowd P. W., Nasrabadi N. M., (1997). Cellular radio channel assignment using a modified Hopfield network. IEEE Transactions on Vehicular Technology, Vol. 46, pp. 957-967.

96. Knowles J.D., Corne D.W., (1999). The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Multiobjective Optimisation, Congress on Evolutionary Computation, pp. 98-105, Washington, July.

97. Knowles J.D., Corne D.W., Oates M.J., (2000). The Pareto-Envelope based Selection Algorithm for Multiobjective Optimization, In Proceeding of the Sixth International Conference on Parallel Problem Solving from Nature (PPSN VI), pp.839-848, Berlin, September.

98. Kohonen T., (1989). Self organization and associative memory. Springer series in information sciences, springer verlag, 3rd edition.

99. Koza J.R., (1992). Genetic Programming. MIT Press, ISBN : 0-262-11170-5.

100. Kunz D., (1991). Channel assignment for cellular radio using neural network. IEEE Transactions on Vehicular Technology, Vol. 40, pp. 188-193.

101. Kurwase F., (1984). A variant of Evolution Strategies for Vector optimization, Ph. D Thesis, Vanderbilt University, Nashville, Tennessee.

102. Laumanns M., Thiele L., Deb K., Zitzler E, (2002). Combining convergence and diversity in Evolutionary multi-objective optimization. Evolutionary Computation, 10(3), pp. 263-282.

103. Lechuga M.S, Rowe J, (2005). Particle swarm optimization and fitness sharing to solve multi-objective optimization problems. In Congresson Evolutionary Computation (CEC'2005), pp. 1204- 1211,Edinburgh,Scotland,UK,September.IEEE Press.

104. Lee C.C., (1990). Fuzzy logic in control systems : Fuzzy logic controller, Part I, Part II. IEEE Trans. on Syst., Man, and Cyber., Vol. 20, No.2, pp. 404- 435.

105. Li S. Z., (1995). Markov Random Field, Modeling in computer vision. Spring Verlag, 1995.

106. Li J. P., Balazs M. E., Parks G., Clarkson P. J., (2002). A species conserving genetic algorithm for multimodal function optimization, Evolutionary Computation, 10(3), pp. 207-234.

107. Li X., (2003). A non-dominated sorting particle swarm optimizer for multiobjective optimization. In Erick Cantu-Paz et al., editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2003), pp 37-48. Springer. Lecture Notes in Computer Science Vol.2723, July.

108. Li X., (2004). Adaptively choosing neighborhood bests using species in swarm optimizer for multimodal function optimization. GECCO, pp. 105-116.

109. Lin C.T., Lee C.S.G., (1991). Neural-network-based Fuzzy logic control and decision system. IEEE Trans. On Comp., Vol.40, No. 12, pp. 1320-1336.

110. Lis J., Eiben A.E., (1996). A Multi-Sexual Genetic Algorithm for Multiobjective Optimization, In T.Fukuda and T. Furuhashi ed., Proceedings of the 1996 International Conference on Evolutionary Computation, Nagoya, Japan, pp.59-64.

111. Loukdache A., Alami J., El Belkacemi M., El Imrani A., (2007). New control approach for permanent magnet synchronous machine. International Journal

of Electrical and Power Engineering 1(4), pp. 455 -462.

112. Mahfoud, S. W., (1992). Crowding and preselection revisited. Parallel Problem Solving from Nature. North-Holland, Amsterdam, (2), pp. 27-36.

113. Mahfoud S.W, (1994). Crossover Interactions Among niches. Proceedings of the 1st IEEE Conference on Evolutionary Computation, pp. 188-193.

114. Mahfoud S. W, (1995). Niching Methods for Genetic Algorithms. PhD Thesis, University of Illinois.

115. Mahfouf, M., Chen, M. Y., Linkens, D. A., (2004). Adaptive Weighted Particle Swarm Optimization for Multi- objective Optimal Design of Alloy Steels, Parallel Problem Solving from Nature - PPSN VIII, pp. 762-771, Birmingham, UK, Springer-Verlag. Lecture Notes in Computer Science Vol. 3242.

116. Maniezzo V., Montemanni R., (1999). An exact algorithm for the radio link frequency assignment problem. Report CSR 99-02, Computer Science, Univ. of Bologna.

117. Martinez T. M., Schulten K. J., (1991). A "neural-gas" network learns topologies. Artificial neural network, Rédacteurs : T. Kohonen, K. Mäkisara, O. Simula et J. Kanges, pp. 397-402, Elsevier Science Publishers, B. V(North Holland).

118. Mathar R., Mattfeldt J., (1993). Channel assignment in cellular radio networks. IEEE Transactions on Vehicular Technology, Vol. 42, pp. 647-656.

119. McCulloch W. S., Pitts W., (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, pp. 115-133.

120. Michalewicz Z., (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York.

121. Miettinen K., (1999). Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, Massachusetts.

122. Miller B.L., Shaw M.J., (1996). Genetic Algorithms with Dynamic Niche Sharing for Multimodal Function Optimization. IlliGAL Report no. 95010.

123. Mitchell M., Forrest S., (1993). Genetic Algorithms and Artificial Life. Paper 93-11-072.

124. Montemanni R., Moon Jim N. J., Smith D. H., (2003). An improved Tabu search algorithm for the fixed spectrum frequency assignment problem. IEEE Transactions on Vehicular Technology, vol. 52, No.3, May.

125. Moore J., Chapman R., (1999). Application of particle swarm to multiobjective optimization. Department of Computer Science and Software Engineering, Auburn University.

126. Mostaghim S., Teich J., 2003(a). Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pp. 26-33, Indianapolis, Indiana, USA, April.

127. Mostaghim S., Teich J., 2003(b). The role of c-- dominance in multi objective particle swarm optimization methods. In Congress on Evolutionary Computation (CEC'2003), volume 3, pp. 1764-1771, Canberra, Australia, December.

128. Mostaghim S., Teich J., (2004). Covering pareto-optimal fronts by subswarms in multi-objective particle swarm optimization. In Congress on Evolutionary Computation (CEC'2004), volume 2, pp. 1404- 1411, Portland, Oregon, USA, June.

129. Pareto V., (1896). Cours d'économie politique, vol. 1 et 2, F. Rouge, Lausanne.

130. Parsopoulos K. E., Vrahatis M. N., (2002). Particle swarm optimization method in multiobjective problems. In Proceedings of the 2002 ACM Symposium on Applied Computing (SAC'2002), pp. 603-607, Madrid, Spain.

131. Parsopoulos K. E., Tasoulis D., Vrahatis M. N., (2004). Multiobjective optimization using parallel vector evaluated particle swarm optimization. In Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 2004), volume 2, pp. 823-828, Innsbruck, Austria, February.

132. Pelikan M., Goldberg D. E., (2001). Escaping hierarchical traps with competent genetic algorithms. In Proceeding. of the Genetic and Evolutionary Computation Conference, pp. 511- 518.

133. Petrowsky A., (1996). A clearing procedure as a niching method for Genetic Algorithms. Proceedings of IEEE International Conference of Evolutionary Computation, (Nagoya-Japan), pp. 798-803.

134. Pulido G. T., (2005). On the Use of Self-Adaptation and Elitism for Multiobjective Particle Swarm Optimization. PhD thesis, Computer Science Section, Department of Electrical Engineering, CINVESTAV-IPN, Mexico, September.

135. Pulido, G. T., Coello, C. A., (2004). Using Clustering Techniques to Improve the Performance of a Particle Swarm Optimizer, In Kalyanmoy Deb et al., editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2004), pp. 225-237, Seattle, Washington, USA, Springer-Verlag, Lecture Notes in Computer Science Vol. 3102.

136. Qing L., Gang W., Zaiyue Y., Qiuping W., (2008). Crowding clustering genetic algorithm for multimodal function optimization, Applied Soft Computing 8, pp. 88-95.

137. Rahman M.A., Hoque M. A., (1998). On-line adaptive artificial neural network based vector control of permanent magnet synchronous motors. IEEE Trans. On Energy Conversion, Vol.13, No. 4, pp. 311-318, 1998.

138. Ramos V., Fernandes C., Rosa A.C., (2005). Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes. Technical report, Instituto Superior Técnico, Lisboa, Portugal, http :// cvrm/staff/vram 58.html.

139. Raquel C. R., Naval Jr. P. C., (2005). An effective use of crowding distance in multiobjective particle swarm optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2005), pp 257-264, Washington, DC, USA, June.

140. Ray T., Liew K.M., (2002). A swarm metaphor for multiobjective design optimization. Engineering Optimization, 34(2), pp. 141-153, March.

141. Rechenberg, I., (1965). Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment Library Translation.

142. Rechenberg I., (1973). Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Stuttgart.

143. Renfrew A. C., (1994). Dynamic Modeling in Archaeology : What, When, and Where? In S. E. van der Leeuw, editor, Dynamical Modeling and the Study of Change in Archaelogy. Edinburgh University Press, Edinburgh, Scotland.

144. Reyes M. S., Coello C. A. C., (2005). Improving PSO-based multi-objective optimization using crowding, mutation and c--dominance. In Third International Conference on Evolutionary Multi-Criterion Optimization, EMO 2005, pp. 505-519, Guanajuato, México. LNCS 3410, Springer- Verlag.

145. Reynolds R. G., (1994). An Introduction to Cultural Algorithms. In Antony V, Sebald and Lawrence J. Fogel, editors, Proceedings of the Third Annual

Conference on Evolutionary Programming, pp. 131- 139. World Scientific.

146. Reynolds R. G., (1997). Using Cultural Algorithms to support Re-Engineering of Rule-Based Expert Systems in Dynamic Performance Environments : A Case Study in Fraud Detection. IEEE Transactions on Evolutionary Computation, volume 1 No.4, November.

147. Reynolds R. G., Zannoni E., (1994). Learning to Understand Software Using Cultural Algorithms. In Antony V, Sebald and Lawrence J. Fogel, editors, Proceedings of the Third Annual Conference on Evolutionary Programming. World Scientific.

148. Ritzel B., (1994). Using Genetic Algorithms to Solve a Multiple Objective Groundwater Pollution Containment Problem. Water Resources Research 30, pp. 1589-1603.

149. Rosenblatt F., (1958). The perceptron : a probabilistic model for information storage and organization in the brain. Psychological review, 65, pp. 386-408.

150. Rudolph G., (1998). On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In Proceedings of the 5th IEEE Conference on Evolutionary Computation, pp. 511-516, Piscataway, New Jersey.

151. Säreni B., Krähenbühl L., (1998). Fitness sharing and niching methods revisited. IEEE transactions on Evolutionary Computation vol. 2, No. 3, pp. 97-106.

152. Säreni B., (1999). Méthodes d'optimisation multimodales associées à la modélisation numérique en électromagnétisme. Thèse de doctorat, l'école centrale de Lyon.

153. Schaffer J.D., (1985). Multiple objective optimization with vector evaluated genetic algorithms, In J.J. Grefenstette ed., Proceedings of the First International Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, pp. 93-100.

154. Schoeman, I.L., Engelbrecht, A.P., (2004). Using vector operations to identify niches for particle swarm optimization. Proceedings of the conference on cybernetics and intelligent systems.

155. Schoeman I.L., Engelbrecht A., (2005). A parallel vector-based particle swarm optimizer. International Conf. on Artificial Neural Networks and Genetic Algorithms (ICANNGA), Portugal.

156. Schoenauer M., Michalewicz Z., (1997). Evolutionary Computation. Control and Cybernetics, 26(3), pp. 307-338.

157. Schott J. R., (1995). Fault tolerant design using single and multi-criteria genetic algorithms. Master's thesis, Departement of Aeronautics and Astronautics, Boston.

158. Shi Y., Eberhart R., (1998). Parameter selection in particle swarm optimization. In Evolutionary Programming VII : Proceedings of the Seventh annual Conference on Evolutionary Programming, pp. 591-600, NewYork, USA. Springer-Verlag.

159. Shirazi S. A. G., Amindavar H., (2005). Fixed channel assignment using new dynamic programming approach in cellular radio networks. Computers and Electrical Engineering 31, pp. 303-333.

160. Sierra, M. R., Coello C., (2006). Multi-objective Particle Swarm Optimizers : A Survey of the State-of-the-art, Inter-national Journal of Computational Intelligence Research 2 (3), pp. 287-308.

161. Slemon G. R., (1994). Electrical machines for variable-frequency drives. Proceeding of IEEE, Vol.82, No.8, pp. 1123-1139.

162. Smith R., Forrest S., Perelson A. S., (1993). Searching for diverse, cooperative populations with genetic algorithms. Evolutionary Computation 1(2), pp. 127-149.

163. Spears W.M., (1994). Simple sub-populations schemes. Proceedings of the 3rd Annual Conference on Evolutionary Programming, World Scientific, pp. 296- 307.

164. Srivinas N., Deb K., (1993). Multiobjective Optimization using Non dominated Sorting in Genetic Algorithms, technical Report, Departement of Mechanical Engineering, Institute of Technology, India.

165. Stacey A., Jancic M., Grundy I., (2003). Particle swarm optimization with mutation. In Proceedings of the Congress on Evolutionary Computation, pp. 1425-1430,Camberra, Australia.

166. Surry P., (1995). A Multiobjective Approach to Constrained Optimisation of Gas Supply Networks : The COMOGA Method, Evolutionary Computing AISB Workshop Selected Papers, Lecture Notes in Computing Sciences, pp. 166-180.

167. Tanaki H., (1995). Multicriteria optimization by Genetic Algorithms : a case of scheduling in hot rolling process, In Proceeding of the Third APORS, pp. 374-381.

168. Ursem R.K., (1999). Multinational evolutionary algorithms. Proceedings of Congress of Evolutionary Computation (CEC-99), vol. 3, Washington, DC, USA, pp. 1633-1640.

169. Van Veldhuizen D.A., (1999). Multiobjective, evolutionary algorithms : classification, analyses and new innovation, air force institute of Technology, United States.

170. Valenzuela M., Uresti-Charre E., (1997). A Non- Cenerational Genetic Algorithm for Multiobjective Optimization, Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 658-665.

171. Wang, Y., Yang, Y., (2008). Handling Multiobjective Problem with a Novel Interactive Multi-swarm PSO, Proceedings of the 4th International Conference on Intelligent Computing : Advanced Intelligent Computing Theories and Applications 5227, pp. 575-582.

172. Watson J.P., (1999). A performance assessment of modern niching methods for parameter optimization problems. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (Morgan- Kaufmann, San Francisco).

173. Xie L. X, BENI G., (1991). A Validity Measure for Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 13 No 8.

174. Xiao-hua Z, Hong-yun M., Li-cheng J., (2005). Intelligent particle swarm optimization in multiobjective optimization. In Congress on Evolutionary Computation (CEC'2005), pp. 714-719, Edinburgh, Scotland,UK, September.

175. Zadeh L.A., (1965). Fuzzy Sets. Information and control, 8, pp. 338-353.

176. Zadeh L.A., (1994). Soft Computing, LIFE lecture, Japan.

177. Zannoni E., Reynolds R. G., (1997). Extracting Design Knowledge from Genetic Programs Using Cultural Algorithms. Full version in Journal Evolutionary Computation.

178. Zhang J., Huang De-Shuang, Lok T., Lyu M. R., (2006). A novel adaptive sequential niche technique for multimodal function optimization. Neurocomputing 69, pp. 2396-2401.

179. Zhang L.B., Zhou C.G., Liu X.H., Ma Z.Q., Liang Y.C., (2003). Solving multi objective optimization problems using particle swarm optimization. In Congress on Evolutionary Computation (CEC'2003), volume 3, pp. 2400-2405,

Canberra, Australia, December.

180. Zhao B., Cao Y., (2005). Multiple objective particle swarm optimization technique for economic load dispatch. Journal of Zhejiang University SCIENCE, 6A (5), pp. 420-427.

181. Zhu. S., Reynolds. R.G., (1998). The Design of Fully Fuzzy Cultural Algoritms with Evolutionary Programming for Function Optimization. International Conference GP May.

182. Zitzler E.,. Deb k., Thiele L., (2000).Comparison of Multiobjective Evolutionary Algorithms : Empirical Results. Evolutionary Computation, 8(2), pp. 173-195.

183. Zitzler E., Thiele L., (1998). An Evolutionary Algorithm for Multiobjective optimization : The Strength Pareto Approach, TIK-Report 43.

Discipline : Sciences de l'ingénieur

Spécialité : Informatique et Télécommunications

UFR : Informatique et Télécommunications

Responsable de l'UFR : Driss Aboutajdine Période d'accréditation : 2005- 2008

Titre de la thèse : Contribution à l'optimisation complexe par des techniques de Swarm Intelligence

Prénom, Nom : Lamia Benameur

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy