WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Contribution à  l'étude de l'évapotranspiration sur le bassin de la donga au bénin: comparaison du bilan d'énergie de 3 périodes de 15 jours.

( Télécharger le fichier original )
par Ossénatou MAMADOU
Université d'Abomey-Calavi - DEA Energie et Environnement 2009
  

précédent sommaire

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

Conclusion générale et perspectives

Ce mémoire qui s'inscrit dans le cadre du programme AMMA (Analyse Multidisciplinaire de la Mousson Africaine) et du projet Ouémé-2025, vise a comprendre le fonctionnement de l'interface surface - atmosphère. L'objectif est de réaliser une première estimation des flux d'énergie et de documenter les flux d'évapotranspiration en climat soudanien.

Les interactions surface - atmosphère sont complexes. L'analyse détaillée des processus des différents échanges qui s'effectuent dans la couche limite atmosphérique est indispensable a leur compréhension. Dans cette optique, l'analyse du bilan d'énergie a la surface est une étape incontournable. Comprendre cette relation en zone soudanienne est particulièrement intéressant en raison du lien étroit observé entre condition atmosphérique et variabilité climatique, ainsi que le rOle important que joue l'évapotranspiration dans le bilan hydrologique.

Ce travail constitue une première analyse du bilan d'énergie en zone soudanienne. Notre étude a porté sur deux stations situées dans la Donga/Bénin une jachère herbacée (Nalohou 974484N, 160457E, 449 m) et une forêt claire (Bellefoungou 979115N, 171800E, 414 m).

L'analyse météorologique sur une année faite (chapitre 2) a partir des données de Nalohou montre une saisonnalité notable des paramètres climatiques. De cette analyse, trois périodes de quinze (15) jours chacune ont été identifiées. Les principaux termes du bilan d'énergie de méso-échelle ont été évalués et leur variabilité caractérisée sur ces différentes périodes. Le calcul des flux turbulents de chaleur est celui qui nécessite le plus d'attention. Le flux de chaleur a la surface du sol a été calculé par deux méthodes la méthode des harmoniques et la formulation empirique de la FAO.

Dans un premier temps, nous avons comparé le flux de chaleur harmonique calculé a Nalohou en janvier oi le sol est nu et aucune pluie n'est tombée depuis des mois, avec celui calculé a partir de la formulation de la FAO. On a remarqué a travers cette comparaison que le flux de chaleur calculé a partir de la formulation de FAO sous estime le flux de chaleur a la surface du sol quand le sol est sec et chaud de presque 50%. La conclusion tirée de cette comparaison est que la formulation de la FAO est mise a défaut pour les sols chauds et secs. D'autre part, on a constaté a partir de la comparaison des cycles journaliers de G au niveau des deux sites et sur les trois périodes que ce paramètre est plus important a Bellefoungou qu'a Nalohou. Le déphasage temporel et la faible amplitude observés en Novembre a Nalohou sont liés a la couverture du sol (litière) qui diminue et retarde la quantité d'énergie devant parvenir a la surface du sol. Elle joue donc le rOle d'amortisseur entre la surface du sol et l'atmosphère.

Les flux turbulents de chaleur ont été mesurés par eddy corrélation. L'analyse de leur qualité a permis de vérifier la fiabilité des ces données. Plus des 75 % des données qualifiables sont de qualité haute c'est-a-dire qu'elles sont utilisables pour une recherche fondamentale. Aussi, l'analyse des tracés des cycles journaliers de H et de LE ainsi que de leurs qualités associées a montré que les données sont de très bonne qualité dans la journée lorsque l'atmosphère est instable. On a remarqué également que la qualité de LE est liée a celle de H. Plus l'atmosphère est turbulente et plus l'eau arrive a s'évaporer rapidement au sein de celle-ci. On a remarqué enfin que, les flux d'évapotranspiration mesurés sur la forêt de Bellefoungou étaient de mauvaise qualité avant la construction d'un pilOnne pour supporter les appareils. L'ancien mat téléscopique était trop court et surtout trop instable pour permettre des mesures de qualité bonne.

Les résultats du calcul du bilan d'énergie (Nalohou) sur les trois périodes ont montré une saisonnalité très marquée des flux d'énergie. La saison sèche est caractérisée par un taux élevé du flux de chaleur sensible et du flux de chaleur a la surface du sol; le flux de chaleur latente est faible pendant cette période. En saison humide, le flux de chaleur latente est prépondérant. En Novembre oii le rayonnement net est plus élevé que ce qui est observé en

saison sèche et en saison humide, H et G représentent aussi les termes majoritaires du bilan. Mais, ils demeurent plus faibles que ceux observés en Janvier. Le flux de chaleur latente est moyen durant cette période. La variabilité spatiale des flux de chaleur sensible et de chaleur latente a été montrée a travers la comparaison de ces paramètres au niveau des deux sites en saison sèche et humide. Nous pouvons a partir de cette première analyse du bilan d'énergie donner une dynamique de l'évapotranspiration réelle au pas de temps mensuel, journalier et voir même de la demi-heure.

Les travaux réalisés dans le cadre de cette étude nous ont permis de quantifier chacune des composantes du bilan d'énergie sur trois périodes de 15 jours chacune dans la Donga/Bénin. Une analyse plus poussée reste nécessaire pour l'estimation du flux de chaleur latente au vu des résultats qui montrent une sous estimation systématique de ce terme. D'autre part, une attention particulière sera portée au calcul du flux a la surface du sol aux inter-saisons en raison de la couche de litière laissée sur le site de mesure en Novembre.

La poursuite de cette étude sur une durée plus longue permettra de mieux caractériser les variabilités intra et inter saisonnières des différentes composantes du bilan. Elle permettra également d'acquérir une meilleure compréhension du fonctionnement de l'interface surface - atmosphère en vue de la documentation des flux d'évapotranspiration. Il est aussi a noter que cette étude menée sur une période plus longue contribuera a bien identifier les paramètres qui influencent le bilan d'énergie en zone soudanienne. Enfin, il s'agira également de vérifier la fermeture du bilan de masse hydrologique a partir des mesures de l'évapotranspiration réelle. Une comparaison entre l'évapotranspiration réelle et l'évapotranspiration potentielle est envisagée afin de tester le réalisme des paramétrisations couramment utilisées en hydrologie et qui estiment l'évapotranspiration réelle a partir de l'évapotranspiration potentielle.

.1 Références Bibliographiques

[11 Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S, Gautier, E., Olivry, J-C., Albergel, J., Amogu, 0., Cappelaere, B., Dessouassi, R., Diedhiou, A., Le Breton, E., Mamadou, I., Sighomnou, D., 2009. Spatio-Temporal Variability of Hydrological Regimes Around the Boundaries between Sahelian and Sudanian Areas of West Africa: A Synthesis. Journal of Hydrology, AMMA special issue, in press. doi :10.1016/j.jhydrol.2008.12.012.

[21 Andersen, I., Dione, O., Jarosewich-Holder, M., Olivry, J.C., 2005. The Niger River Basin : a vision for sustainable management.. The World Bank, Washington, DC, the USA; Directions in development, K.G. Golitzen Ed.145 p.

[31 Mahé, G., Olivry, J. C., Dessouassi, R., Orange, D., Bamba, F. and Servat, E. 2000. Relations eaux de surface - eaux souterraines d'une rivière tropicale au Mali. Comptes Rendus de l'Académie des Sciences, Serie IIa, 330, 689-692.

[41 Zin, I., Zribi, M., Ottlé, C., Hiernaux, P., Lacaze, R., Le Hégarat-Mascle, S., Sanou, B., André, C., Guibert, S., Saux-Picard, S., Dessay, N., Boulain, N., Cappelaere, B., Descroix, L., Galle, S., Peugeot, C., Seghieri, J., Séguis, L., 2009. Land cover assessment on the three AMMA experimental sites from SPOT/HRVIR data. Soumis a International Journal of Applied Earth Observation and Geoinformation.

[51 Galle S., Séguis L., Arjounin M., Bariac T., Bouchez J.-M., Braud I., Cohard J.-M., Descloitres M., Favreau G., Kamagaté B., Laurent J.-P., Le Lay M., Malinur F., Peugeot C., Robain H., Seghieri J., Seidel J.-L., Varado N., Zin I. and Zribi M., 2005. Evaluation des termes du bilan hydrologique de la Donga par mesure et modélisation. In : "Premier colloque de restitution scientifique Ecosphère Continentale", Toulouse. ECCO-PNRH : 411-416.

[61 Varado N., Braud I., Galle S., Le Lay M., Séguis L., Kamagaté B. and Depraetere C., 2006. Multicriteria assessment of the Representative Elementary Watershed approach on the Donga catchment (Benin) using a downward approach of model complexity. Hydrology and Earth System Sciences, 10 : 427-442.

[71 Le Lay M., Saulnier G.-M., Galle S., Séguis L., Métadier M. and Peugeot C., 2008. Model representation of the Sudanian hydrological water cycle. Application on the Donga catchment (Bénin). Journal of Hydrology, 363(1-4) : 32-41.

[8lFoken.,T., 2006. "50 Years of the Monin-Obukhov Theory ". Boundary-Layer Meteorology 119(3) : 431-447.

[91 Van Dijk, A., Moene, A.F., De Bruin, H.A.R, 2004. The principles of surface flux physics : theory, practice and description of the ECPACK library.Meteorology and Air Quality Group Wageningen University Duivendaal 2 6701 AP Wageningen The Netherlands.

[101 Prandtl, L., 1904. Uber, Flussibkeitsbewegung bei sehr kleiner Reibung, Verhandl. III, Internat. Math.- Kong., Heidelberg, Teubner, Leipzig pp.484-491.

[111 Brutsaert, W., 1982. Evaporation in the Atmosphere, theory History, And Applications, 1st ed., 299pp., Dordrecht, Kluwer Academic Publishers, 1982.

[121 Heusinkveld, B.G., Jacobs A.F.G., Holtslag, A.A.M., Berkowicz, S.M., 2003. Surface energy balance closure in an arid region : role of soil heat flux. Agricultural and Forest Meteorology 122 (2004) 21-37.

[131 Guyot, A., Cohard, J-M., Anquetin, S., Galle, S., 2008. Combined analysis of energy and water budgets to consolidate latent heat fux estimation using an infrared scintillometer. Agricultural and Forest Meteorology, this issue.

[141 Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration : Guidelines for Computing Crop Water Requirements. United Nations Food and Agriculture Organization, Irrigation and Drainage Paper 56. Rome, Italy, 300 pp.

[151 Van Wijk, W. et De Vries, D., 1963. Periodic temperature variations in a homogeneous soil. Physics of Plant Environment : 103-143.

[161 Kaimal, J. C. et Businger, J. A., 1963. A Continuous Wave Sonic Anemometer-Thermometer, J. Applied Meteorol., 2, 156-164.

[171 Fleagle, R. G., Businger, J. A., 1980. An Introduction to Atmospheric Physics, Academic Press, Inc., New York.

[181 Schotanus, P., Nieuwstadt, F. T. M., De Bruin, H. A. R., 1983. Temperature Measurement with a Sonic Anemometer and its Application to Heat and Moisture Fluxes, Boundary-Layer Meteorol., 26, 81-93.

[191 Kaimal, J. C. et Gaynor, J. E., 1991. Another Look at Sonic Thermometry, Boundary-Layer Meteorol., 56, 401-410.

[201 Liu, H., Peters, G., Foken, T., 2001. New Equations for Sonic Temperature Variance and Buoyancy Heat Flux with an Omnidirectional Sonic Anemometer, Boundary-Layer Meteorol., 100, 459-468.

[211 Kaimal, J.C. et Finnigan, J.J., 1994. Atmospheric boundary layer flows : Their structure and measurement. Oxford University Press, New York, NY, 289 pp.

[221 Tanner, B.D., Swiatek, E. et Greene, J.P., 1993. Density fluctuations and use of the krypton hygrometer in surface flux measurements. In : R.G. Allen (Editor), Management of irrigation and drainage systems : integrated perspectives. American Society of Civil Engineers, New York, NY, pp. 945-952.

[231 Webb, E.K., Pearman, G.I. et Leuning, R., 1980. Correction of the flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of The Royal Meteorological Society, 106 : 85-100.

[241 Liebethal, C. et Foken, T., 2004. On the significance of the Webb correction to fluxes. Corrigendum. Boundary-Layer Meteorology, 113 : 301.

[251 Liebethal, C. et Foken, T., 2003. On the significance of the Webb correction to fluxes.

Boundary-Layer Meteorology, 109 : 99-106.

[261 Fuehrer, P.L. et Friehe, C.H., 2002. Flux corrections revisited. Boundary-Layer Meteorology, 102 : 415-457.

[271 Moore, C.J., 1986. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology, 37 : 17-35.

[281 Horst, T.W., 2003. Corrections to Sensible and Latent Heat Flux Measurements.

[291 Vickers, D. et Mahrt, L., 1997. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14 : 512-526.

[301 Højstrup, J., 1993. A statistical data screening procedure. Measuring Science Technology, 4 : 153-157.

[311 Foken, T. et Wichura, B., 1996. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 78 : 83-105.

[321 Foken, T., et Mauder, M., 2004. Documentation and Instruction Manual of the Eddy Covariance Software Package TK2. Department of Micrometeorology, Univ of Bayreuth, Germany.

[331 Favier,V., 2004. Etude du bilan d'énergie de surface et de la production des écoulements de fonte d'un glacier des Andes d'Equateur; relation glacier-climat en zone tropicale. These de doctorat de l'Université Montpellier II, 248 pp.

[341 Rubio, E., Caselles, V., Coll, C., Valour, E. et Sospedra, F., 2003. Thermal-infrared emissivities of natural surfaces : improvements on the experimental set-up and new measurements, International Journal of Remote Sensing,24 :24, 5379 - 5390.

[351 Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A.S., Martin, P.H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R. et Vesala, T., 2000. Estimates of the annual net carbon and water exchange of forests : The EUROFLUX methodology. Andvances in Ecological Research, 30 : 113-175.

[361 Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., Lai-tat, E., 2001. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agric. For. Meteorol. 108, 293-315.

[371 Foken, T., Wimmer, F., Mauder, M., Thomas, C., Liebethalal, C., 2006. Some aspects of the energy balance closure problem. Department of Micrometeorology, Univ of Bayreuth, Germany.

[381 Kukharets, V. P., Nalbandyan, H. G., et Foken, T., 2000. Thermal Interactions between the underlying surface and a nonstationary radiation flux, Izv., Atmos. Ocenanic Phys., 36, 318-325.

[391 Panin, G. N., Tetzlaff, G., et Raabe, A., 1998. Inhomogeneity of the land surface and

problems in the 10 parameterization of surface fluxes in natural conditions,Theor. Appl. Climat., 60, 163-178.

.2 Annexe1 Proclist de Nalohou

Comments

Comment = Station Campbell

Comment = Nalohou Csat + Licor

Comment = 20/10/2008

Comments

Comment = Actions effectuees

Comment = Extraction des donnees du fichier meteo,

Comment = Despike, Calculs Statistiques, Pression partielle

Comments

Comment = Direction et vitesses du vent, Rotations

Comment = Comment = Comments

Comment = Correction temperature sonique, Covariance wT, wq et wco2

Comment = Correction Webb LE et Fco2

Comment = Flux de chaleur sensible corrige

Comments

Comment = variable d'installation

Comment = Comment = Set Values From Time =

To Time =

Number of Variables = 3

Storage Label = hauteur-sonic

Assignment value = 4.95

Storage Label = ecart-nord

Assignment value = 0

Storage Label = ang-sonic-licor

Assignment value = 0

Comments

Comment = Variable de configuration sonic licor

Comment = pour le calcul des corrections frequentielles

Set Values From Time =

To Time =

Number of Variables = 10

Storage Label = Csat-samplefreq

Assignment value = 20

Storage Label = Licor7500-samplefreq

Assignment value = 20

Storage Label = Csat-path

Assignment value = 0.116

Storage Label = Licor7500-path

Assignment value = 0.125

Storage Label = wT-ver-path-sep

Assignment value = 0

Storage Label = wT-hor-path-sep

Assignment value = 0

Storage Label = wx-ver-path-sep

Assignment value = 0.1

Storage Label = wx-hor-path-sep

Assignment value = 0.3

Storage Label = Csat-TimeConStant

Assignment value = 0.05

Storage Label = Licor7500-TimeConStant

Assignment value = 0.05

Comments

Comment = Valeur dynamiques alternatives

Comment = T en(c)c, P en kPa, Rh en %

Set Values From Time =

To Time =

Number of Variables = 3

Storage Label = T-alt

Assignment value = 30

Storage Label = P-alt

Assignment value = 100

Storage Label = Rh-alt

Assignment value = 70

Comments

Comment = rhoCp en J/m3/K

Comment = L en J/g

Comment = ecart nord en degre

Set Values From Time =

To Time =

Number of Variables = 2

Storage Label = rhoCp-cst

Assignment value = 1130

Storage Label = L-cst

Assignment value = 2450

Comments

Comment = Extraction des variables

Comment = du fichier meteo

Comment = Preprocessed Files

File <0>=C \Documents and Settings\mamadou\Bureau\traitementedire \na\na-met-090707-040908-EdiRe-heure locale-rugosite.csv

File <1> = File <2> = Set Values From Time =

To Time =

Number of Variables = 7

Storage Label = offsetc

Assignment value = <0> offsetc

Storage Label = gainc

Assignment value = <0> gainc

Storage Label = offsetq

Assignment value = <0> offsetq

Storage Label = gainq

Assignment value = <0> gainq

Storage Label = h-veg

Assignment value = <0> h

Storage Label = disp-height

Assignment value = <0> d

Storage Label = Z0

Assignment value = <0> Z0

Set Values

From Time = To Time =

Number of Variables = 3

Storage Label = T-meteo

Assignment value = <0> Ta-meteo

Storage Label = Rh-meteo

Assignment value = <0> Rh

Storage Label = P-meteo

Assignment value = <0> Patm

Comments

Comment = Conversion de la pression meteo

Comment = unite d'entree hPa

Comment = unite de sortie kPa

User defined From Time = To Time =

Storage Label = P-meteo

Apply to =

Apply by =

Equation = P-meteo*0.1

Variable = P-meteo

Comments

Comment = Extraction des variables du fichier brut Comment = Vitesse en m/S, Co2 en mg/m3, H20 en g/m3 Comment = Pression en kpa, T en~C

Extract

From Time = To Time =

Channel = 1

Label for Signal = SECONDS

Extract

From Time = To Time =

Channel = 2

Label for Signal = NANOSECONDS

Extract

From Time = To Time =

Channel = 3

Label for Signal = RECORD

Extract

From Time = To Time =

Channel = 4

Label for Signal = u-sonic

Extract

From Time = To Time =

Channel = 5

Label for Signal = v-sonic

Extract

From Time = To Time =

Channel = 6

Label for Signal = w-sonic

Extract

From Time = To Time =

Channel = 7

Label for Signal = T-sonic

Extract

From Time = To Time =

Channel = 8

Label for Signal = diag-csat

Extract

From Time = To Time =

Channel = 9

Label for Signal = co2-licor

Extract

From Time = To Time =

Channel = 10

Label for Signal = q-licor

Extract

From Time =

To Time =

Channel = 11

Label for Signal = P-licor

Comments

Comment = Changement d'unité

Comment = CO2 en mmol/m3

Comment = h2O en g/m3

Linear

From Time = To Time =

Signal = co2-licor

1st Offset = 0

1st Gain = 0.0227273

1st Curvature = 0

2nd Offset = 0 2nd Gain = 1 2nd Curvature = 0

Linear

From Time = To Time =

Signal = q-licor 1st Offset = 0 1st Gain = 1 1st Curvature = 0

2nd Offset = 0 2nd Gain = 1 2nd Curvature = 0

Comments

Comment = Despike

Comment = 3 fois l'écart-type

Comment = Si plus de 4 spike de suite, on ne les compte pas Despike

From Time = To Time =

Signal = u-sonic Standard Deviations = 3

Spike width = 4

Spike % consistency = 50

Replace spikes = x

Storage Label spike count = spike-U

Despike

From Time = To Time =

Signal = v-sonic Standard Deviations = 3

Spike width = 4

Spike % consistency = 50

Replace spikes = x

Storage Label spike count = spike-V

Despike

From Time = To Time =

Signal = w-sonic

Standard Deviations = 3

Spike width = 4

Spike % consistency = 50

Replace spikes = x

Storage Label spike count = spike-W

Despike

From Time = To Time =

Signal = co2-licor

Standard Deviations = 3

Spike width = 4

Spike % consistency = 50

Replace spikes = x

Storage Label spike count = spike-co2

Despike

From Time = To Time =

Signal = q-licor Standard Deviations = 3

Spike width = 4

Spike % consistency = 50

Replace spikes = x

Storage Label spike count = spike-q

Despike

From Time = To Time =

Signal = T-sonic

Standard Deviations = 3

Spike width = 4

Spike % consistency = 50

Replace spikes = x

Storage Label spike count = spike-T

Despike

From Time = To Time =

Signal = P-licor Standard Deviations = 3

Spike width = 4

Spike % consistency = 50

Replace spikes = x

Storage Label spike count = spike-P

Comments

Comment = Calcul Stat

Comment = moyenne et écart-types Comment = sur U, V, W, co2, q, T, P 1 chn statistics

From Time =

To Time =

Signal = u-sonic

Storage Label Mean = u-sonic-mean Storage Label Std Dev = u-sonic-std Storage Label Skewness =

Storage Label Kurtosis = Storage Label Maximum = Storage Label Minimum = Storage Label Variance =

Storage Label Turbulent Intensity = Alt Turbulent Intensity Denominator = 1 chn statistics

From Time =

To Time =

Signal = v-sonic

Storage Label Mean = v-sonic-mean Storage Label Std Dev = v-sonic-std Storage Label Skewness =

Storage Label Kurtosis = Storage Label Maximum = Storage Label Minimum = Storage Label Variance =

Storage Label Turbulent Intensity = Alt Turbulent Intensity Denominator = 1 chn statistics

From Time =

To Time =

Signal = w-sonic

Storage Label Mean = w-sonic-mean Storage Label Std Dev = w-sonic-std Storage Label Skewness =

Storage Label Kurtosis = Storage Label Maximum = Storage Label Minimum = Storage Label Variance =

Storage Label Turbulent Intensity = Alt Turbulent Intensity Denominator = 1 chn statistics

From Time =

To Time =

Signal = T-sonic

Storage Label Mean = T-sonic-mean Storage Label Std Dev = T-sonic-std Storage Label Skewness =

Storage Label Kurtosis = Storage Label Maximum = Storage Label Minimum = Storage Label Variance =

Storage Label Turbulent Intensity = Alt Turbulent Intensity Denominator = 1 chn statistics

From Time =

To Time =

Signal = co2-licor

Storage Label Mean = co2-licor-mean Storage Label Std Dev = co2-licor-std Storage Label Skewness =

Storage Label Kurtosis = Storage Label Maximum = Storage Label Minimum = Storage Label Variance =

Storage Label Turbulent Intensity = Alt Turbulent Intensity Denominator = 1 chn statistics

From Time =

To Time =

Signal = q-licor

Storage Label Mean = q-licor-mean Storage Label Std Dev = q-licor-std Storage Label Skewness =

Storage Label Kurtosis = Storage Label Maximum = Storage Label Minimum = Storage Label Variance =

Storage Label Turbulent Intensity = Alt Turbulent Intensity Denominator = 1 chn statistics

From Time =

To Time =

Signal = P-licor

Storage Label Mean = P-licor-mean Storage Label Std Dev = P-licor-std Storage Label Skewness =

Storage Label Kurtosis = Storage Label Maximum = Storage Label Minimum = Storage Label Variance =

Storage Label Turbulent Intensity =

Alt Turbulent Intensity Denominator =

Spectra

From Time = 18/01/2008 12 :00 :00

To Time = 18/01/2008 16 :00 :00

Signal = T-sonic

Window = Hamming Kaiser/Bell coef = Output Spectra = spec-T Sort Output =

Detrend data = None Comments

Comment = Direction du vent

Comment = se fait avant rotation

Comment =

Wind direction

From Time =

To Time =

Signal (u) = u-sonic Signal (v) = v-sonic Orientation = ecart-nord

Wind Direction Components = U-fS-V-fE

Wind Direction Output = N-0-deg-E-90-deg

Storage Label Wind Direction = Wind-sonic-Direction Storage Label Wind Dir Std Dev = Wind-sonic-Direction-std Comments

Comment = Rotation (double rotation)

Comment = Vitesse du vent

Comment = dans sys orthogonal

Rotation coefficients From Time =

To Time =

Signal (u) = u-sonic Signal (v) = v-sonic Signal (w) = w-sonic Storage Label Alpha = Alpha

Storage Label Beta = Beta

Storage Label Gamma = Gamma

Optional mean u = Optional mean v = Optional mean w = Rotation

From Time =

To Time =

Signal (u) = u-sonic Signal (v) = v-sonic Signal (w) = w-sonic Alpha = Alpha

Beta = Beta

Gamma = Gamma Do 1st Rot = x

Do 2nd Rot = x

Do 3rd Rot = x

Comments

Comment = Les variables de vent sont

Comment = dans un repére instantané fonction

Comment = du vent (v-sonic-mean = 0)

1 chn statistics

From Time =

To Time =

Signal = u-sonic

Storage Label Mean = wind-sonic-speed-mean

Storage Label Std Dev = wind-sonic-speed-std

Storage Label Skewness =

Storage Label Kurtosis =

Storage Label Maximum = wind-sonic-speed-max

Storage Label Minimum =

Comments

Comment = Calcul et Retrait du Lag

Comment = pour le Licor Openpath

Comment =

Cross Correlate

From Time =

To Time =

Signal = w-sonic

Signal which lags = q-licor

Correlation type = Covariance

Output Correlation curve = 10

Storage Label Peak Time = time-lag-wq

Storage Label Peak Value =

Cross Correlate

From Time =

To Time =

Signal = w-sonic

Signal which lags = co2-licor

Correlation type = Covariance

Output Correlation curve = 10

Storage Label Peak Time = time-lag-wco2

Storage Label Peak Value =

Cross Correlate

From Time =

To Time =

Signal = w-sonic

Signal which lags = P-licor

Correlation type = Covariance

Output Correlation curve = 10

Storage Label Peak Time = time-lag-wp

Storage Label Peak Value =

Remove Lag From Time = To Time =

Signal = co2-licor

Min Lag (sec) = -2

Lag (sec) = time-lag-wco2

Max Lag (sec) = 2

Below Min default (sec) = 0

Above Max default (sec) = 0

Remove Lag From Time = To Time =

Signal = q-licor Min Lag (sec) = -2

Lag (sec) = time-lag-wq

Max Lag (sec) = 2

Below Min default (sec) = 0

Above Max default (sec) = 0

Remove Lag From Time = To Time =

Signal = P-licor Min Lag (sec) = -2

Lag (sec) = time-lag-wp

Max Lag (sec) = 2

Below Min default (sec) = 0

Above Max default (sec) = 0

Comments

Comment = Calcul de la pression partielle

Comment = directement en kPa

Comment = Partial pressure From Time = To Time =

Storage Label = e-vapor-licor

Apply to =

Apply by =

Variable type = Absolute density

Measured variable = q-licor-mean

Min or QC = 0.001

Max or QC = 40

Temperature (C) = T-sonic-mean

Min or QC = Max or QC = Pressure (Kpa) = P-licor-mean

Min or QC = 0 Max or QC = 105

Molecular weight (g/mole) = 18.0

Conc conv factor = 1000

Partial pressure From Time = To Time =

Storage Label = e-vapor-meteo

Apply to =

Apply by =

Variable type = Relative humidity

Measured variable = Rh-meteo

Min or QC = Max or QC = Temperature (C) = T-meteo

Min or QC = Max or QC = Pressure (Kpa) = P-meteo

Min or QC = Max or QC = Molecular weight (g/mole) = 18.0

Conc conv factor = 1000

Comments

Comment = Calcul de q-meteo

Comment = en g/m3

Comment = User defined From Time = To Time =

Storage Label = q-meteo

Apply to =

Apply by =

Equation = 18*e-vapor-meteo*1000/(8.32*(273.15fT-meteo)) Variable = e-vapor-meteo

Variable = T-meteo

Comments

Comment = Application du gain q-licor-mean/q-meteo a q-licor-mean Comment = pour rephasage de q-licor sur q-meteo

Comment = On reste en g/m3

User defined From Time = To Time =

Storage Label = gain-q-licor-mean

Apply to =

Apply by =

Equation = q-meteo/q-licor-mean

Variable = q-licor-mean

Variable = q-meteo

Linear

From Time = To Time =

Signal = q-licor 1st Offset = 0

1st Gain = gain-q-licor-mean

1st Curvature = 0

2nd Offset = 0 2nd Gain = 1 2nd Curvature = 0

Comments

Comment = Correction température sonique

Comment = Schotanus et al. 1983; Manuel Csat Campbell Scientifique Comment = T-sonic-cor=T-sonic(1-f0.51q-licor)

User defined From Time = To Time =

Storage Label = T-sonic-cor

Apply to =

Apply by =

Equation = ((T-sonic-mean--273.15)/(1 f.32*e-vapor-meteo/P-meteo))- 273.15

Variable = P-meteo

Variable = e-vapor-meteo

Variable = T-sonic-mean

Density of moist air

From Time = To Time =

Storage Label = rho-licor

Apply to =

Apply by =

Vapour pressure (Kpa) = e-vapor-licor

Min or QC = Max or QC = Temperature (C) = T-sonic-cor

Min or QC = Max or QC = Pressure (Kpa) = P-licor-mean

Min or QC = Max or QC = Density of moist air

From Time = To Time =

Storage Label = rho-meteo

Apply to =

Apply by =

Vapour pressure (Kpa) = e-vapor-meteo

Min or QC = Max or QC = Temperature (C) = T-meteo

Min or QC = Max or QC = Pressure (Kpa) = P-meteo

Min or QC = Max or QC = Comments

Comment = Changement d'unité de la masse volumique de l'air humide Comment = entrée en :

Comment = sortie en :

User defined From Time = To Time =

Storage Label = rho-licor

Apply to =

Apply by =

Equation = rho-licor/1000

Variable = rho-licor

Variable =

Variable =

Variable =

Variable =

User defined From Time = To Time =

Storage Label = rho-meteo

Apply to =

Apply by =

Equation = rho-meteo/1000

Variable = rho-meteo

Variable =

Variable =

Variable =

Variable =

Comments

Comment = Calcul de rhocp

Comment = en j/g

Comment =

Sensible heat flux coefficient

From Time = To Time =

Storage Label = rhoCp-licor

Apply to =

Apply by =

Vapour pressure (Kpa) = e-vapor-licor

Min or QC = Max or QC = Temperature (C) = T-sonic-cor

Min or QC = Max or QC = Pressure (Kpa) = P-licor-mean

Min or QC = Max or QC = Alternate rhoCp = 1100

Sensible heat flux coefficient

From Time = To Time =

Storage Label = rhoCp-meteo

Apply to =

Apply by =

Vapour pressure (Kpa) = e-vapor-meteo

Min or QC = Max or QC = Temperature (C) = T-meteo

Min or QC = Max or QC = Pressure (Kpa) = P-meteo

Min or QC = Max or QC = Alternate rhoCp = 1100

Comments

Comment = flux de chaleur sensible sonique

Comment = calcul covariance

Comment = 2 chn statistics From Time = To Time =

Signal = w-sonic Signal = T-sonic Storage Label Covariance = wT-cov

Storage Label Correlation =

Storage Label Flux = H-sonic-tmp

Flux coefficient = rhoCp-meteo

Comments

Comment = Flux de chaleur latente

Comment = Calcul covariance

Comment = 2 chn statistics From Time = To Time =

Signal = w-sonic Signal = q-licor Storage Label Covariance = wq-cov

Storage Label Correlation =

Storage Label Flux = E-licor-tmp

Flux coefficient =

Comments

Comment = Calcul de la chaleur latente de vaporisation de l'eau Comment = J/g

Comment =

Latent heat of evaporation

From Time = To Time =

Storage Label = L-meteo

Apply to =

Apply by =

Temperature (C) = T-meteo

Min or QC = Max or QC = Pressure (KPa) = P-meteo

Min or QC = Max or QC = LE flux coef, L = L-cst

Latent heat of evaporation

From Time = To Time =

Storage Label = L-licor

Apply to =

Apply by =

Temperature (C) = T-sonic-cor

Min or QC = Max or QC = Pressure (KPa) = P-licor-mean

Min or QC = Max or QC = LE flux coef, L = L-cst

Comments

Comment = Calcul du flux

Comment = Comment = User defined From Time = To Time =

Storage Label = LE-licor-tmp

Apply to =

Apply by =

Equation = E-licor-tmp*L-licor

Variable = E-licor-tmp

Variable = L-licor

Comments

Comment = Flux de carbone Fco2-licor-tmp

Comment = unité mmol/m2/s

Comment = 2 chn statistics From Time = To Time =

Signal = w-sonic Signal = co2-licor

Storage Label Covariance = wco2-cov

Storage Label Correlation =

Storage Label Flux = Fco2-licor-tmp

Flux coefficient = 1

Comments

Comment = Conversion de Fco2-licor-tmp

Comment = entree mmol/m3

Comment = sortie umol/m3

User defined From Time = To Time =

Storage Label = Fco2-licor-tmp2

Apply to =

Apply by =

Equation = 1000*Fco2-licor-tmp

Variable = Fco2-licor-tmp

Comments

Comment = Calcul du flux de quantité de mouvement Comment =

Comment =

2 chn statistics From Time = To Time =

Signal = w-sonic Signal = u-sonic Storage Label Covariance = uw-cov

Storage Label Correlation =

Storage Label Flux = momentum-sonic

Flux coefficient = rho-meteo

Comments

Comment = u-sonic* Vitesse de frottement

Comment = Comment = U star

From Time = To Time =

Storage Label = U-star

Apply to =

Apply by =

uw covariance (m2/s2) = uw-cov

Min or QC = Max or QC = Virtual temperature

From Time = To Time =

Storage Label = T-virtual

Apply to =

Apply by =

Vapour pressure (Kpa) = e-vapor-meteo

Min or QC = Max or QC = Temperature (C) = T-meteo

Min or QC = Max or QC = Pressure (Kpa) = P-meteo

Min or QC = Max or QC = Comments

Comment = Calcul Lo

Comment = hauteur du sonique 4,95m

Comment = hauteur végétation selon relevé Omar Stability - Monin Obhukov

From Time = To Time =

Storage Label = stability

Apply to =

Apply by =

Measurement height (m) = hauteur-sonic

Zero plane displacement (m) = disp-height

Virtual Temperature (C) = T-virtual

Min or QC = Max or QC = H flux (W/m2) = H-sonic-tmp

Min or QC = Max or QC = H flux coef, RhoCp = rhoCp-meteo

Min or QC = Max or QC = Scaling velocity (m/s) = U-star

Min or QC = Max or QC = Comments

Comment = Corrections spectrales

Comment =

Comment =

Frequency response

From Time =

To Time =

Storage Label = freq-corr-uw

Apply to =

Apply by =

Correction type = UW

Measurement height (m) = hauteur-sonic Zero plane displacement (m) = disp-height Boundary layer height (m) =

Stability Z/L = stability

Wind speed (m/s) = wind-sonic-speed-mean

Sensor 1 Flow velocity (m/s) = wind-sonic-speed-mean Sensor 1 Sampling frequency (Hz) = Csat-sampleFreq Sensor 1 Low pass filter type = Recursive

Sensor 1 Low pass filter time conStant = 0.02 Sensor 1 High pass filter type = Recursive Sensor 1 High pass filter time conStant = 600 Sensor 1 path length (m) = Csat-path

Sensor 1 Time conStant (s) = Csat-TimeConStant Sensor 1 Tube attenuation coef =

Sensor 2 Flow velocity (m/s) = wind-sonic-speed-mean Sensor 2 Sampling frequency (Hz) = Csat-SampleFreq Sensor 2 Low pass filter type = Recursive

Sensor 2 Low pass filter time conStant = 0.02 Sensor 2 High pass filter type = Recursive Sensor 2 High pass filter time conStant = 600 Sensor 2 path length (m) = Csat-path

Sensor 2 Time conStant (s) = Csat-TimeConStant Sensor 2 Tube attenuation coef =

path separation (m) = wT-hor-path-sep Get spectral data type = Model

Get response function from = model

Reference tag =

Reference response condition =

Sensor 1 subsampled =

Sensor 2 subsampled =

Apply velocity distribution adjustment = Use calculated distribution =

Velocity distribution std dev=

Stability distribution std dev=

Frequency response

From Time =

To Time =

Storage Label = freq-corr-tw

Apply to =

Apply by =

Correction type = WX

Measurement height (m) = hauteur-sonic Zero plane displacement (m) = disp-height Boundary layer height (m) =

Stability Z/L = stability

Wind speed (m/s) = wind-sonic-speed-mean

Sensor 1 Flow velocity (m/s) = wind-sonic-speed-mean Sensor 1 Sampling frequency (Hz) = Csat-SampleFreq Sensor 1 Low pass filter type = Recursive

Sensor 1 Low pass filter time conStant = 0.02 Sensor 1 High pass filter type = Recursive Sensor 1 High pass filter time conStant = 600 Sensor 1 path length (m) = Csat-path

Sensor 1 Time conStant (s) = Csat-TimeConStant Sensor 1 Tube attenuation coef =

Sensor 2 Flow velocity (m/s) = wind-sonic-speed-mean Sensor 2 Sampling frequency (Hz) = Csat-SampleFreq Sensor 2 Low pass filter type = Recursive

Sensor 2 Low pass filter time conStant = 0.02 Sensor 2 High pass filter type = Recursive Sensor 2 High pass filter time conStant = 600 Sensor 2 path length (m) = Csat-path

Sensor 2 Time conStant (s) = Csat-TimeConStant Sensor 2 Tube attenuation coef =

path separation (m) = wT-hor-path-sep Get spectral data type = Model

Get response function from = model

Reference tag =

Reference response condition =

Sensor 1 subsampled =

Sensor 2 subsampled =

Apply velocity distribution adjustment = Use calculated distribution =

Velocity distribution std dev=

Stability distribution std dev=

Comments

Comment = Calcul de la séparation latérale Comment =

Comment =

User defined

From Time =

To Time =

Storage Label = lat-path-sep

Apply to =

Apply by =

Equation = SQRT((wx-hor-path-sep*sin(Wind-sonic-Direction-ang-soniclicor))* (wx-hor-path-sep*sin(Wind-sonic-Direction-ang-sonic-licor))-Fwxver-path-sep*wx-ver-path-sep)

Variable = wx-hor-path-sep Variable = Wind-sonic-Direction

Variable = ang-sonic-licor Variable = wx-ver-path-sep Frequency response

From Time =

To Time =

Storage Label = freq-corr-7500

Apply to =

Apply by =

Correction type = WX

Measurement height (m) = hauteur-sonic

Zero plane displacement (m) = disp-height

Boundary layer height (m) = Stability Z/L = stability

Wind speed (m/s) = wind-sonic-speed-mean

Sensor 1 Flow velocity (m/s) = wind-sonic-speed-mean

Sensor 1 Sampling frequency (Hz) = Csat-SampleFreq

Sensor 1 Low pass filter type = Recursive

Sensor 1 Low pass filter time conStant = 0.02

Sensor 1 High pass filter type = Recursive

Sensor 1 High pass filter time conStant = 600

Sensor 1 path length (m) = Csat-path

Sensor 1 Time conStant (s) = Csat-TimeConStant

Sensor 1 Tube attenuation coef =

Sensor 2 Flow velocity (m/s) = wind-sonic-speed-mean

Sensor 2 Sampling frequency (Hz) = Licor7500-SampleFreq

Sensor 2 Low pass filter type = Recursive

Sensor 2 Low pass filter time conStant = 0.02

Sensor 2 High pass filter type = Recursive

Sensor 2 High pass filter time conStant = 600

Sensor 2 path length (m) = Licor7500-path

Sensor 2 Time conStant (s) = Licor7500-TimeConStant

Sensor 2 Tube attenuation coef =

path separation (m) = lat-path-sep

Get spectral data type = Model

Get response function from = model

Reference tag =

Reference response condition =

Sensor 1 subsampled = Sensor 2 subsampled = Apply velocity distribution adjustment =

Use calculated distribution = Velocity distribution std dev=

Stability distribution std dev=

Mathematical operation From Time =

To Time =

Storage Label = uw-cov-fc Apply to =

Apply by =

Measured variable A = uw-cov

Operation = *

Measured variable B = freq-corr-uw

Mathematical operation From Time =

To Time =

Storage Label = U-star-fc Apply to =

Apply by =

Measured variable A = U-star

Operation = *

Measured variable B = freq-corr-uw

Mathematical operation From Time =

To Time =

Storage Label = Fco2-licor-fc Apply to =

Apply by =

Measured variable A = Fco2-licor-tmp

Operation = *

Measured variable B = freq-corr-7500

Mathematical operation From Time =

To Time =

Storage Label = H-sonic-fc Apply to =

Apply by =

Measured variable A = H-sonic-tmp

Operation = *

Measured variable B = freq-corr-tw

Mathematical operation From Time =

To Time =

Storage Label = E-licor-fc Apply to =

Apply by =

Measured variable A = E-licor-tmp

Operation = *

Measured variable B = freq-corr-7500

Mathematical operation

From Time = To Time =

Storage Label = LE-licor-fc

Apply to =

Apply by =

Measured variable A = LE-licor-tmp

Operation = *

Measured variable B = freq-corr-7500

Comments

Comment = Correction de Webb pour la vapeur d'eau Comment =

Comment = Webb correction From Time = To Time =

Storage Label = LE-licor-webb

Apply to =

Apply by =

Scalar value type = Density (g/m3)

Scalar value = q-meteo

Min or QC = Max or QC =

Water vapour value type = partial Pressure (kpa) Water vapour value = e-vapor-meteo

Min or QC = Max or QC = Temperature (C) = T-sonic-cor

Min or QC = Max or QC = Pressure (Kpa) = P-meteo

Min or QC = Max or QC = H flux (W/m2) = H-sonic-fc

Min or QC = Max or QC = LE flux (W/m2) = LE-licor-fc

Min or QC = Max or QC = H flux coef, RhoCp = rhoCp-meteo

Min or QC = Max or QC = LE flux coef, L = L-licor

Min or QC = Max or QC = Scalar molecular wt. = 18

Scalar flux type = LE (W/m2)

Scalar flux coefficient = 1

Min or QC = Max or QC = Alternate water vapour pressure (kpa) =

Alternate temperature (C) =

Alternate pressure (kpa) =

User defined From Time = To Time =

Storage Label = LE-licor-Q0

Apply to =

Apply by =

Equation = LE-licor-tmp-fLE-licor-webb

Variable = LE-licor-tmp

Variable = LE-licor-webb

Variable =

Variable =

Variable =

Comments

Comment = Correction de Webb pour le co2 Comment = entrée en mmol/m2/s

Comment = sortie en umol/m2/s

Webb correction From Time = To Time =

Storage Label = Fco2-licor-webb

Apply to =

Apply by =

Scalar value type = Density (mg/m3)

Scalar value = co2-licor-mean

Min or QC = Max or QC =

Water vapour value type = partial Pressure (kpa) Water vapour value = e-vapor-meteo

Min or QC = Max or QC = Temperature (C) = T-sonic-cor

Min or QC = Max or QC = Pressure (Kpa) = P-meteo

Min or QC = Max or QC = H flux (W/m2) = H-sonic-fc

Min or QC = Max or QC = LE flux (W/m2) = LE-licor-Q0

Min or QC =
Max or QC =

From Time =

To Time =

Left Axis Value = H-sonic-Q0 Right Axis Value = H-sonic-tmp

Left Axis Minimum = -100 Left Axis Maximum = 500 Right Axis Minimum = -100 Right Axis Maximum = 500 Match Left/Right Axes = Plot Value

From Time =

To Time =

Left Axis Value = LE-licor-Q0 Right Axis Value = LE-licor-tmp

Left Axis Minimum = -200 Left Axis Maximum = 800 Right Axis Minimum = -200 Right Axis Maximum = 800 Match Left/Right Axes = Plot Value

From Time =

To Time =

Left Axis Value = Fco2-licor-Q0

Right Axis Value = Fco2-licor-tmp2

Left Axis Minimum = -20 Left Axis Maximum = 20 Right Axis Minimum = -20 Right Axis Maximum = 20 Match Left/Right Axes = Plot Value

From Time =

To Time =

Left Axis Value = q-licor-mean Right Axis Value = T-sonic-cor Left Axis Minimum = 0

Left Axis Maximum = 25

Axis Minimum = 10

Right Axis Maximum = 50 Match Left/Right Axes = Plot Value

From Time =

To Time =

Left Axis Value = beta Right Axis Value = gamma Left Axis Minimum =

Left Axis Maximum = Right Axis Minimum = Right Axis Maximum = Match Left/Right Axes = Plot Value

From Time =

To Time =

Left Axis Value = spike-T Right Axis Value = spike-q Left Axis Minimum =

Left Axis Maximum = Right Axis Minimum = Right Axis Maximum = Match Left/Right Axes =

H flux coef, RhoCp = rhoCp-meteo

Min or QC =

Max or QC =

LE flux coef, L = L-meteo

Min or QC =

Max or QC =

Scalar molecular wt. = 44

Scalar flux type = Fx (umol/m2/s)

Scalar flux coefficient = 1

Min or QC =

Max or QC =

Alternate water vapour pressure (kpa) =

Alternate temperature (C) =

Alternate pressure (kpa) =

User defined From Time =

To Time =

Storage Label = Fco2-licor-Q0

Apply to = Apply by =

Equation = Fco2-licor-tmp2-f-Fco2-licor-webb Variable = Fco2-licor-tmp2

Variable = Fco2-licor-webb

Variable = Variable = Variable = Comments

Comment = Calcul du flux de chaleur sensible corrige Comment =

Comment = User defined From Time =

To Time =

Storage Label = H-sonic-Q0

Apply to = Apply by = Equation = H-sonic-fc-(0.32*rhoCp-meteo*LE-licor-Q0*(T-sonic-mean+273.15)*

Right

(T-sonic-cor--273.15))/(216.5*P-meteo*10*L-meteo) Variable = H-sonic-fc

Variable = rhoCp-meteo

Variable = LE-licor-Q0

Variable = T-sonic-mean

Variable = T-sonic-cor

Variable = P-meteo

Variable = L-meteo

Comments

Comment = Test de Stationarite

Comment = Critère de qualite

Comment =

Stationarity

From Time =

To Time =

Signal (A) = u-sonic

Signal (B) = w-sonic

Storage Label A StdDev Stationarity = u-stat Storage Label B StdDev Stationarity = w-stat Storage Label AB Covariance Stationarity = uw-stat Segment length, minutes = 5

Linear detrend segments =

Linear detrend run =

Stationarity

From Time =

To Time =

Signal (A) = co2-licor

Signal (B) = w-sonic

Storage Label A StdDev Stationarity = Storage Label B StdDev Stationarity =

Storage Label AB Covariance Stationarity = co2w-stat Segment length, minutes = 5

Linear detrend segments =

Linear detrend run =

Stationarity

From Time =

To Time =

Signal (A) = q-licor

Signal (B) = w-sonic

Storage Label A StdDev Stationarity = Storage Label B StdDev Stationarity =

Storage Label AB Covariance Stationarity = qw-Stat Segment length, minutes = 5

Linear detrend segments =

Linear detrend run =

Stationarity

From Time =

To Time =

Signal (A) = T-sonic

Signal (B) = w-sonic

Storage Label A StdDev Stationarity = Storage Label B StdDev Stationarity =

Storage Label AB Covariance Stationarity = tsw-Stat Segment length, minutes = 5

Linear detrend segments =

Linear detrend run =

Plot Value

.3 Annexe 2 Description des installations

précédent sommaire






Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy








"Des chercheurs qui cherchent on en trouve, des chercheurs qui trouvent, on en cherche !"   Charles de Gaulle