2.3 Basic properties of the model
Let be:
S(0), E(0),
Ind(0), Id(0), Q(0),
R(0),
the initial data.
The solutions (S, E, Ind,
Id, Q, R) of the model (2.2), when they
exist, are positive for all t > 0. à t = 0,
N(0) = N0 and
dS dt
= ë - (1 - ø)(1 -
è)(â1Ind +
â2Id)S - cfS, d
dt[S(t)ñ(t)] =
ëñ(t).
From where
t
ñ(t) = exp( f [(1 -
ø)(1 -
è)(â1Ind(s)
+ â2Id(s)) + cf]ds)
> 0
0
is the integration factor. Hence, integrating this last relation
with respect to t, we have
t
S(t)ñ(t) - S(0)
= f ëñ(s)ds,
0
So that the division of both side by ñ(t)
yield. The solution is given by:
t
S(t) = [S(0) + f
ëñ(s)ds]ñ-1(t)
> 0. (2.3)
0
A similar procedure is used to prove that
E(t) > 0 and
Ind(t), Id(t),
Q(t), R(t) > 0 for all t >
0.
N(t) = S(t) +
E(t) + Ind(t) +
Id(t) + Q(t) +
R(t),
|
dN(t) dt
|
=
|
dS(t) + dt
|
dE(t) + dt
|
dInd(t) + dt
|
dId(t) + dt
|
dJ(t) + dt
|
dR(t) dt
|
. (2.4)
|
Master's thesis II * Molecular Atomic Physics and Biophysics
Laboratory-UYI * YAMENI STEINLEN DONAT D
(c)2021
Replacing each derivative with its value in the right-hand member
gives :
|
dN(t) dt
|
= ë - cfS - uInd -
uId - uQ
|
Master's thesis II ? Molecular Atomic Physics and
Biophysics Laboratory-UYI ? YAMENI STEINLEN DONAT D
(c)2021
2.4. LOCAL ASYMPTOTIC STABILITY OF DISEASE-FREE EQUILIBRIUM (DFE)
OF THE MODEL (2-2) 20
dN(t) = À - d0N, dt
where
d0 = min(cf, ii).
|
That implies that
|
lim
t--+-oo
|
À
supN(t) = . (2.5) do
|
2.4 Local asymptotic stability of disease-free
equilibrium (DFE) of the model (2-2)
The COVID-19 model (2-2) has a DFE, obtained by setting the
rights of the equations in model (2-2) to zero, given by
N(t) = 8(t) + E(t) + Ind(t) +
Id(t) + Q(t) + R(t).
For t = 0, we have
N(0) = 8(0) + E(0) + Ind(0) + Id(0) +
Q(0) + R(0)
î0 = (8*,E*,I* nd,I*
d,Q*,R*) = (8(0),0,0,0,0,0) (2.6)
Where 8(0) = cf ë
2.4.1 Basic reproduction number
fi is the rate of new infections in the compartment,
F is the matrix of new infections. We will then restrict this system
to the infected populations (E, Ind, Id, Q). When we
evaluate the partial derivatives of (E, Ind, Id, Q)
we obtain the matrix [F] next:
2.4. LOCAL ASYMPTOTIC STABILITY OF DISEASE-FREE EQUILIBRIUM (DFE)
OF THE MODEL (2-2) 21
?
? ? ? ? ? ? ?
fi =
,
?
? ? ? ? ? ? ?
(1 - è)(1 -
ø)(â1Ind +
â2Id)S
0
0
0
?
? ? ? ? ? ? ?
F=
afi(c0) aE
afj(c0) aE
afk(c0) aE
afm(c0) aE
afi(c0) aInd
afj(c0) aInd
afk(c0) aInd
afm(c0) aInd
afi(c0) aId
afj(c0) aId
afk(c0) aId
afm(c0) aId
1 ,
afi(c0) aQ
afj(c0) aQ
afk(c0) aQ
afm(c0) aQ
1 .
Master's thesis II * Molecular Atomic Physics and Biophysics
Laboratory-UYI * YAMENI STEINLEN DONAT D (c)2021
?
0 (1 - è)(1 -
ø)(â1)S(0) (1 - è)(1 -
ø)â2S(0) 0
? ? ?0 0 0 0 F = ? ? ?
0
?0 0 0
0 0 0 0 Now let's look for the matrix of
individuals between compartments. V - is the rate of transfer of individuals
out of the compartment V + is the rate of transfer of individuals into
the compartment by all other means
Vi = V - - V +,
where
|
V - =
|
?
? ? ? ? ? ? ?
|
äE (ó1 + á +
u)Ind (å +
u)Id (ó2 + u)Q
|
1
|
, V + =
|
?0
? ? ?päE
? ? ? ?(1 - p)äE åId
+ áInd
|
1
|
, Vi=
|
?
? ? ? ? ? ? ?
|
äE
(ó1 + á +
u)Ind - PäE (å +
u)Id - (1 - p)äE
(ó2 + u)Q - åId
- áInd
|
1
|
.
|
Master's thesis II ? Molecular Atomic Physics and
Biophysics Laboratory-UYI ? YAMENI STEINLEN DONAT D
(c)2021
2.4. LOCAL ASYMPTOTIC STABILITY OF DISEASE-FREE EQUILIBRIUM (DFE)
OF THE MODEL (2-2) 22
|
V =
|
?
? ? ? ? ? ? ?
|
?Vi ?E
?Vj ?E
?Vk ?E
?Vm ?E
|
?Vi ?Ind ?Vj
?Ind
?Vk ?Ind
?Vm ?Ind
|
?Vi ?Id ?Vj
?Id
?Vk ?Id
?Vm ?Id
|
?Vi ?Q
?Vj ?Q
?Vk ?Q
?Vm ?Q
|
?
? ? ? ? ? ? ?
|
,V =
|
?
? ? ? ? ? ? ?
|
ä 0 0 0
-pä ó1 + á + u 0 0
-(1 - p)ä 0 ? + u 0
0 -á -? ó2 + u
|
?
? ? ? ? ? ? ?
|
The matrix FV -1 called next generation matrix is
given by
|
FV -1 =
|
?
? ? ? ? ? ? ?
|
ëâ1(1-è)(1-ø)p +
ëâ2(1-è)(1-ø)(1-p)
ëâ1(1-è)(1-ø)
ëâ2(1-è)(1-ø) 0
cf (ó1+á+u) cf (?+u) cf
(?+á+u) cf (?+u)
0 0 0 0
0 0 0 0
0 0 0 0
|
1
|
.
|
Let's find the eigenvalues of the matrix FV -1, we
calculate the determinant det(ëI4 - F V -1),
|
det(ëI4 - FV -1) =
|
?
? ? ? ? ? ? ?
|
ë- X1 X2 X3 0 0 ë 0 0
0 0 ë 0 0 0 0 ë
|
1
|
.
|
where
|
{
|
X1 = ëâ1(1-è)(1-ø)p
cf (ó1+á+u) +
ëâ2(1-è)(1-ø)(1-p) ,
cf
(?+u)
X2 = ëâ1(1-è)(1-ø)
cf (?+á+u) ,
X3 = ëâ2(1-è)(1-ø)
cf (?+u) .
|
(2.7)
|
The eigenvalues are obtained by calculating det(ëI4 - FV -1)
= 0. We obtain the following characteristic equation:
ë(ë2(ë - X1)) = 0.
The maximum eigenvalue of this matrix is Rc. Thus, it
follows from [24] that the basic reproduction number of the model(2-2), noted
Rc is given by
Master's thesis II * Molecular Atomic Physics and Biophysics
Laboratory-UYI * YAMENI STEINLEN DONAT D
(c)2021
2.4. LOCAL ASYMPTOTIC STABILITY OF DISEASE-FREE EQUILIBRIUM (DFE)
OF THE MODEL (2-2) 23
Re = (1 - è)(1 - ø)ë[
pâ1+ (1 - p)â2]. (2.8)
cf (ó1 + u + á) (? + u)
2.4.2 Local stability of balance without disease
(DFE)
Theorem 2.4. The DFE (Disease-Free Equilibrium) is locally
asymptotically stable when Re < 1 and unstable when
Re > 1.
Proof. The local stability of the model is analyzed by the
Jacobian matrix of the system at the equilibrium point î0 =
(efë , 0, 0, 0, 0, 0).
It is recalled that this number of reproductions is defined in
the presence of control measures (social distancing and wearing a face
mask).
|
J(î0) =
|
? ?
-(cf) 0 -â1(1 - è)(1 - ø)S(0)
-â2(1 - è)(1 - ø)S(0) 0 0
? ?
? ?
?0 -ä â1(1 - è)(1 - ø)S(0)
â2(1 - è)(1 - ø)S(0) 0 0 ?
? ?
? ?
?0 pä -(ó1 + á + u) 0 0 0 ?
? ?
? ?
?0 (1 - p)ä 0 -(? + u) 0 0 ?
? ?
? ?
?0 0 á ? -(ó2 + u) 0 ?
? ?
è 0 ó1 0 ó2 0
|
The characteristic equation of this matrix is obtained by
computing det(ëI6 - J(î0)) = 0
|
det =
|
? ?
ë + cf 0 -â1(1 - è)(1 - ø)S(0)
-â2(1 - è)(1 - ø)S(0) 0 0
? ?
? ?
?0 ë + ä â1(1 - è)(1 -
ø)S(0) â2(1 - è)(1 - ø)S(0) 0 0 ?
? ?
? ?
?0 pä ë + (ó1 + á + u) 0 0 0
?
? ?
? ?
?0 (1 - p)ä 0 ë + (? + u) 0 0 ?
? ?
? ?
?0 0 á ? ë + (ó2 + u) 0 ?
? ?
è 0 ó1 0 ó2 ë
|
det(ëI6 - J(î0)) = 0 This means
ë(ë + U)(ë + X)[ë3 +
?1ë2 + ?2ë + ?3]. (2.9)
Master's thesis II ? Molecular Atomic Physics and
Biophysics Laboratory-UYI ? YAMENI STEINLEN DONAT D
(c)2021
2.4. LOCAL ASYMPTOTIC STABILITY OF DISEASE-FREE
EQUILIBRIUM (DFE) OF THE MODEL (2-2) 24
We asked, in order to simplify the calculations:
|
{
|
U = cf,
V = ó1 + á + u,
W = ? + u. Y = ó2 + u.
|
The first three eigenvalues are:
ë1 = 0, ë2 = -cf, ë3 =
-(ó2 + u). (2.10)
The three other eigenvalues are obtained by solving
ë3 + ?1ë2 + ?2ë + ?3 = 0, (2.11)
|
where
|
{
|
?1 = V + W + ä,
?2 = (V + W)ä + ä(1 - è)(pâ1 + (1
- p)â2),
?3 = V Wä(1 - è)Rc.
|
(2.12)
|
According to the ROUTH-HURWITZ, the solutions of
(2.9) have positive real parts when :
?1 > 0, ?2 > 0, ?3 > 0, et ?1?2 > 0. More
clearly,
?1, ?2, ?3 > 0 when Rc < 1, This means that
?1?2 > ?3
All calculations done, we see clearly that ?1?2 > ?3.
?1?2 > ?3 when R0 < 1
So î0 is locally asymptotically stable.
2.5. GLOBAL ASYMPTOTIC STABILITY OF THE DISEASE-FREE EQUILIBRIUM
OF MODEL (2.2) 25
2.5 Global asymptotic stability of the disease-free
equilibrium of model (2.2)
Theorem 2.4. The endemic equilibrium
î* = (S*, E*,
I*nd,
Id*,Q*,R*) of the
model exists and is globally asymptotically stable when R0 > 1 .
Proof. To demonstrate the global stability of the
endemic equilibrium, we construct a Lyapunov function [25, 26],
æ = X1E + X2Ind + X3Id + X4Q. (2.13)
æ = (ëâ1(1 -
è)(1 -ø)p+ cf(ó1 + á + u)
Where
ëâ2(1 - è)(1 - ø)(1 -
p) ëâ1 ëâ2
)E + cf(ó1 + u + á)Ind + Id, (2.14)

cf(? + u) cf + ?
æÿ = (ëâ1(1 -
è)(1 - ø)p cf(ó1 + á + u) +
ëâ2(1 - è)(1 - ø)(1 -
p) ëâ1
) Eÿ+ ÿInd+ ëâ2
ÿId. (2.15)
cf(? + u) cf(ó1 + u + á) cf(? + u)
ëâ2(1 - p)
let's replace the derivatives of ÿE,
ÿInd, ÿId in the expression(2.12), we
obtain:
(2.16)
æÿ =[ëâ1p
cf(ó1 + á + u) +
cf(? + u) ](1 - è)(1 - ø)(â1Ind +
â2Id)(1 - è)(1 - ø)
|
(1 - è)(1 - ø)ëâ1
cf
|
Ind - (1 - è)(1 - ø)ëâ2
cf
|
Id.
|
Master's thesis II ? Molecular Atomic Physics and
Biophysics Laboratory-UYI ? YAMENI STEINLEN DONAT D
(c)2021
|
æÿ = [Rc](â1Ind + â2Id) - (1 -
è)(1 - ø)ëâ1
cf
|
Ind - (1 - è)(1 - ø)ëâ2
cf
|
Id. (2.17)
|
from where
|
æÿ = [Rc](1 - è)(1 -
ø)(â1Ind + â2Id) - (1 - è)(1 -
ø)ëâ1
cf
|
Ind - (1 - è)(1 - ø)ëâ2
cf
|
Id. (2.18)
|
Thus æ < 0 if and only if Rc < 1, and
if æ = 0 and if E = Ind = Id = 0 therefore æ is a lyapunov function
for the system (2-2). Thus it follows by the La Salle invariance principle [27]
that the DFE of model (2-2) is globally asymptomatically stable when
Rc < 1.
2.6. CONCLUSION 26
|