Rechercher sur le site:
 
Web Memoire Online
Consulter les autres mémoires    Publier un mémoire    Une page au hasard

Extraction des bases génériques informatives de règles sans calcul de fermetures


par Tarek Hamrouni
Faculté des Sciences de Tunis, Université Tunis El Manar (Tunisie)
Traductions: Original: fr Source:

précédent sommaire

Bibliographie

[1] R. Agrawal, T. Imielinski, an d A. Swami. Mining association rules between sets of items in large databases. In Proceedings of the ACM-SIGMOD Intl. Conference on Management of Data, Washington D. C., USA, pages 207216, May 1993.

[2] R. Agrawal an d R. Srikant. Fast algorithms for mining association rules. In J. B. Bocca, M. Jarke, an d C. Zaniolo, editors, Proceedings of the 20th Intl. Conference on Very Large Databases, Santiago, Chile, pages 478-499, June 1994.

[3] M. Barbut an d B. Monjar det. Ordre et classification. Algèbre et Combinatoire. Hachette, Tome II, 1970.

[4] Y. Basti de. Data mining : algorithmes par niveau, techniques d,implantation et applications. These de doctorat, Ecole Doctorale Sciences pour l,Ingénieur de Clermont-Ferrand, Université Blaise Pascal, France, Décembre 2000.

[5] Y. Basti de, N. Pasquier, R. Taouil, L. Lakhal, an d G. Stumme. Mining minimal non-redundant association rules using frequent close d itemsets. In Proceedings of the International Conference DOOD'2000, Springer-Verlag, LNAI, volume 1861, London, UK, pages 972986, July 2000.

[6] Y. Basti de, R. Taouil, N. Pasquier, G. Stumme, an d L. Lakhal. Mining frequent patterns with counting inference. The Sixth ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, Massachusetts, USA, 2(2) :6675, August 2023, 2000.

[7] S. BenYahia, C. L. Cherif, G. Mineau, an d A. Jaoua. Découverte des regles associatives non re don dantes : application aux corpus textuels. Revue d'Intelligence Artificielle (special issue of Intl. Conference of Journées francophones d'Extraction et Gestion des Connaissances (EGC'2003)), Lyon, France, 17(123) :131143, 2224 Janvier 2003.

[8] S. BenYahia, N. Doggaz, Y. Slimani, an d J. Rezgui. A Galois connection semantics-based approach for deriving generic bases of association rules. Revue d'Intelligence Artificielle (special issue of Intl. Conference of Journées francophones d'Extraction et Gestion des Connaissances (EGC'2004)), Clermont-Ferrand, France, 17(1) :131143, 2124 Janvier 2004.

[9] S. BenYahia an d E. Mephu Nguifo. Approches d,extraction de regles d,association basées sur la correspon dance de Galois. In J.-F. Boulicault an d B. Cremilleux, editors, Revue

d'Ingénierie des Systêmes d'Information (ISI), Hermês-Lavoisier, volume 9, pages 2355, 2004.

[10] S. BenYahia an d E. Mephu Nguifo. Revisiting generic bases of association rules. In Proceedings of 6th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2004), LNCS 3181, Springer-Verlag, Zaragoza, Spain, pages 58-67, September 13, 2004.

[11] M. J. A. Berry an d G. S. Linoff. Data Mining Techniques : For Marketing, Sales, and Customer Relationship Management, Second Edition. Wiley Publishing, 2004.

[12] F. Bo don. A fast apriori implementation. In B. Goethals an d M. J. Zaki, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03), volume 90 of CEUR Workshop Proceedings, Melbourne, Florida, USA, November 19, 2003.

[13] F. Bo don. Surprising results of trie-base d fim algorithms. In B. Goethals, M. J. Zaki, and R. Bayar do, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'04), volume 126 of CEUR Workshop Proceedings, Brighton, UK, November 1st 2004.

[14] F. Bo don an d L. Rányai. Trie : An alternative data structure for data mining algorithms. Journal of Hungarian Applied Mathematics and Computer Application, 38(7-9) :739751, October 2003.

[15] F. Bonchi an d C. Lucchese. On close d constraine d frequent pattern mining. In Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM'04), Brighton, UK, pages 3542, November 14, 2004.

[16] J.-F. Boulicault an d B. Crémilleux. Editorial du volume. In J.-F. Boulicault an d B. Cremilleux, editors, Revue d'Ingénierie des Systêmes d'Information (ISI), Hermês-Lavoisier, volume 9, pages 722, 2004.

[17] T. Brijs, G. Swinnen, K. Vanhoof, an d G. Wets. Using association rules for product as-

sortment decisions : A case study. In Proceedings of the sixth ACM-SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, pages

254260, August 1518 1999.

[18] T. Cal ders an d B. Goethals. Mining all non-derivable frequent itemsets. In T. Elomaa, H. Mannila, an d H. Toivonen, editors, Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD 2002, LNCS, volume 2431, Springer-Verlag, Helsinki, Finland, pages 7485, August 1923 2002.

[19] W. Cheung an d O.R. Zaiane. Incremental mining of frequent patterns without candidate generation or support constraint. In Proceedings of the Seventh International Database Engineering and Applications Symposium (IDEAS 2003), Hong Kong, China, pages 111 116, July 1618, 2003.

[20] C. Creighton an d S. Hanash. Mining gene expression databases for association rules. In Journal Bioinformatics, volume 19, pages 79-86, 2003.

[21] B.A Davey an d H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.

[22] G. Dong, C. Jiang, J. Pei, J. Li, an d L. Wong. Mining succinct systems of minimal generators of formal concepts. In Proceedings of 10th International Conference on Database Systems for Advanced Applications (DASFAA 2005), Beijing, China, pages 175187, April 2005.

[23] A. Le Floc,h, C. Fisette, R. Missaoui, P. Valtchev, an d R. Go din. JEN : un algorithme efficace de construction de générateurs pour l,i dentification des regles d,association. Numéro spécial de la revue des Nouvelles Technologies de l'Information, 1(1) :135-146, 2003.

[24] J. M. Franco. Le Data Warehouse Le Data Mining. Eyrolles, 1999.

[25] W. J. Frawley, G. Piatetsky-Shapiro, an d C. J. Matheus. Knowledge discovery in databases - an overview. Artificial Intelligence Magazine, 13 :5770, 1992.

[26] H. Fu an d E. Mephu Nguifo. Etude et conception d,algorithmes de génération de concepts formels. In J.-F. Boulicault an d B. Crémilleux, editors, Revue d'Ingénierie des Systêmes d'Information (ISI), Hermês-Lavoisier, volume 9, pages 109-132, 2004.

[27] B. Ganter an d R. Wille. Formal Concept Analysis. Springer-Verlag, 1999.

[28] K. Geurts. Traffic accidents data set. In B. Goethals an d M. J. Zaki, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03), volume 90 of CEUR Workshop Proceedings, Melbourne, Florida, USA, November 19, 2003.

[29] R. Go din, R. Missaoui, an d H. Alaoui. Incremental concept formation algorithms base don Galois (concept) lattices. Journal of Computational Intelligence, 11(2) :246267, May 1995.

[30] G. Grahne an d J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In B. Goethals an d M. J. Zaki, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03), volume 90 of CEUR Workshop Proceedings, Melbourne, Florida, USA, November 19, 2003.

[31] J. L. Guigues an d V. Duquenne. Familles minimales d,implications informatives résultant d,un tableau de données binaires. Mathématiques et Sciences Humaines, 24(95) :518, 1986.

[32] T. Hamrouni, S. BenYahia, an d Y. Slimani. PRINCE : Extraction optimisée des bases génériques de regles sans calcul de fermetures. In Proceedings of the 23rd International Conference INFORSID, Inforsid Editions, Grenoble, France, pages 353368, 2427 Mai 2005.

[33] T. Hamrouni, S. BenYahia, an d Y. Slimani. PRINCE : An algorithm for generating rule bases without closure computations. In A Min Tjoa an d J. Trujillo, editors, Proceedings of the 7th International Conference on Data Warehousing and Knowledge Discovery (DaWaK

2005), Springer-Verlag, LNCS, volume 3589, Copenhagen, Denmark, pages 346355, August 22-26, 2005.

[34] J. Han, J. Pei, an d Y. Yin. Mining frequent patterns without candidate generation. In Proceedings of the ACM-SIGMOD Intl. Conference on Management of Data (SIGMOD'00), Dallas, Texas, USA, pages 112, May 2000.

[35] J. Han, J. Pei, Y. Yin, an d R. Mao. Mining frequent patterns without candidate generation : A frequent-pattern tree approach. In Data Mining and Knowledge Discovery, volume 8, pages 53-87, 2004.

[36] J. Hipp, U. Giintzer, an d G. Nakhaeiza deh. Algorithms for association rule mining - a general survey an d comparison. In ACM-SIGKDD Explorations, New York, USA, volume 2, pages 5864, July 2000.

[37] W. A. Koesters an d W. Pijls. APRIORI, a depth first implementation. In B. Goethals and M. J. Zaki, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03), volume 90 of CEUR Workshop Proceedings, Melbourne, Florida, USA, November 19, 2003.

[38] M. Kryszkiewicz. Representative association rules an d minimum condition maximum conse-

quence association rules. In Proceedings of Second European Symposium on Principles

of Data Mining and Knowledge Discovery (PKDD), 1998, LNCS, volume 1510, Springer-

Verlag, Nantes, France, pages 361369, 1998.

[39] M. Kryszkiewicz. Concise representation of frequent patterns base don disjunction-free generators. In Proceedings of the 1st IEEE International Conference on Data Mining (ICDM), San Jose, California, USA, pages 305312, 2001.

[40] M. Kryszkiewicz. Concise representation of frequent patterns an d association rules. Habilitation thesis, Institute of Computer Science, Warsaw University of Technology, Poland, August 2002.

[41] M. Kryszkiewicz. Concise representations of association rules. In D. J. Hand, N.M. Adams, an d R.J. Bolton, editors, Proceedings of Exploratory Workshop on Pattern Detection and Discovery in Data Mining (ESF), Springer-Verlag, LNAI, volume 2447, London, UK, pages 92109, 2002.

[42] R. Lefebure an d G. Venturi. Le Data Mining. Eyrolles, 1999.

[43] C. Lucchese, S. Orlando, an d R. Perego. Mining frequent close d itemsets without duplicates generation. Technical Report 13, I.S.T.I.-C.N.R., Italy, 2004.

[44] C. Lucchesse, S. Orlando, an d R. Perego. DCI-CLOSED : a fast an d memory efficient algorithm to mine frequent close d itemsets. In B. Goethals, M. J. Zaki, an d R. Bayar do,

editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'04), volume 126 of CEUR Workshop Proceedings, Brighton, UK, November 1st 2004.

[45] M. Luxenburger. Implications partielles dans un contexte. Mathematiques et Sciences Humaines, 29(113) :35-55, 1991.

[46] A. M. Mueller. Fast sequential an d parallel algorithms for association rules mining : a comparison. Technical Report CS-TR-3515, Faculty of the Graduate School of the University of Maryland-College Park, USA, October 1995.

[47] N. Pasquier. Datamining : Algorithmes d,extraction et de reduction des regles d,association dans les bases de donnees. These de doctorat, Ecole Doctorale Sciences pour l,Ingenieur de Clermont Ferran d, Universite Clermont Ferran d II, France, Janvier 2000.

[48] N. Pasquier, Y. Basti de, R. Taouil, an d L. Lakhal. Pruning close d itemset lattices for association rules. In M. Bouzeghoub, editor, Proceedings of 14th Intl. Conference Bases de Donnees Avancees, Hammamet, Tunisia, pages 177196, October 2630, 1998.

[49] N. Pasquier, Y. Basti de, R. Taouil, an d L. Lakhal. Efficient mining of association rules using close d itemset lattices. Journal of Information Systems, 24(1) :25-46, 1999.

[50] N. Pasquier, Y. Basti de, R. Touil, an d L. Lakhal. Discovering frequent close d itemsets for association rules. In C. Beeri an d P. Buneman, editors, Proceedings of 7th International Conference on Database Theory (ICDT'99), LNCS, volume 1540, Springer-Verlag, Jerusalem, Israel, pages 398416, January 1999.

[51] J. Pei, J. Han, an d R. Mao. CLOSET : An efficient algorithm for mining frequent closed itemsets. In Proceedings of the ACM-SIGMOD DMKD'00, Dallas, Texas, USA, pages 2130, 2000.

[52] J. L. Pfaltz an d C. M. Taylor. Scientific knowledge discovery through iterative transformation of concept lattices. In Proceedings of Workshop on Discrete Applied Mathematics in conjunction with the 2nd SIAM International Conference on Data Mining, Arlington, Virginia, USA, pages 6574, 2002.

[53] A. Pietracaprina an d D. Zon dolin. Mining frequent itemset using Patricia Tries. In B. Goethals an d M. J. Zaki, editors, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03), volume 90 of CEUR Workshop Proceedings, Melbourne, Florida, USA, November 19, 2003.

[54] A. Salleb. Recherche de motifs frequents pour l,extraction de regles d,association et de caracterisation. These de doctorat, Laboratoire d,Informatique Fon damentale d,Orleans LIFO, Université d,Orléans, France, Décembre 2003.

[55] G. Stumme, R. Taouil, Y. Basti de, N. Pasquier, an d L. Lakhal. Fast computation of concept lattices using data mining techniques. In M. Bouzeghoub, M. Klusch, W. Nutt, an d U. Sattler, editors, Proceedings of 7th Intl. Workshop on Knowledge Representation Meets Databases (KRDB'00), Berlin, Germany, pages 129-139, 2000.

[56] G. Stumme, R. Taouil, Y. Basti de, N. Pasquier, an d L. Lakhal. Intelligent structuring and reducing of association rules with formal concept analysis. In F. Baader., G. Brewker, and T. Eiter, editors, Proceedings of KI'2001 conference, LNAI, volume 2174, Springer-Verlag, Heidelberg, Germany, 2001.

[57] G. Stumme, R. Taouil, Y. Basti de, N. Pasquier, an d L. Lakhal. Computing iceberg concept lattices with TITANIC. Journal on Knowledge and Data Engineering (KDE), 2(42) :189222, 2002.

[58] R. Taouil. Algorithmique du treillis des fermes : application a l,analyse formelle de concepts et aux bases de donnees. These de doctorat, Ecole Doctorale Sciences pour l,Ingenieur de Clermont?Ferran d, Universite Blaise Pascal, France, Janvier 2000.

[59] H. Toivonen. Sampling large databases for association rules. In Proceedings of the 22th Intl. Conference on Very Large Databases, Bombay, India, pages 134145, September 1996.

[60] T. Uno, T. Asai, Y. Uchida, an d H. Arimura. LCM : An efficient algorithm for enumerating

frequent close d item sets. In B. Goethals an d M. J. Zaki, editors, Proceedings of the IEEE

ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03), volume 90 of

CEUR Workshop Proceedings, Melbourne, Florida, USA, November 19, 2003.

[61] T. Uno, T. Asai, Y. Uchida, an d H. Arimura. An efficient algorithm for enumerating closed patterns in transaction databases. Journal of Discovery Science, LNAI, volume 3245, pages 16-31, 2004.

[62] T. Uno, M. Kiyomi, an d H. Arimura. LCM ver. 2 : Efficient mining algorithms for

frequent/closed/maximal itemsets. In B. Goethals, M. J. Zaki, an d R. Bayar do, editors,

Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations

(FIMI'04), volume 126 of CEUR Workshop Proceedings, Brighton, UK, November 1st, 2004.

[63] P. Valtchev, R. Missaoui, R. Go din, an d M. Meri dji. Generating frequent itemsets incrementally : two novel approaches base don Galois lattice theory. Journal Expt. Theoretical Artificial Intelligence, 14(1) :115142, 2002.

[64] P. Valtchev, R. Missaoui, an d P. Lebrun. A fast algorithm for building the Hasse diagram of a Galois lattice. In Proceedings of the Colloque LaCIM 2000, Montreal, Canada, pages 293306, September 2000.

[65] J. Wang, J. Han, an d J. Pei. CLOSET+ : Searching for the best strategies for mining frequent close d itemsets. In Proceedings of the Ninth ACM-SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD'03), Washington D. C., USA, pages 236245, August 24-27, 2003.

[66] R. Wille. Restructuring lattices theory : An approach base don hierarchies of concepts. I. Rival, editor, Ordered Sets, Dordrecht-Boston, pages 445470, 1982.

[67] M. J. Zaki. Mining non-redundant association rules. In Data Mining and Knowledge Discovery, volume 9, pages 223-248, 2004.

[68] M. J. Zaki an d K. Gouda. Fast vertical mining using Diffsets. Technical report, Computer Science Dept., Rensselaer Polytechnic Institute, USA, March 2001.

[69] M. J. Zaki an d C. J. Hsiao. CHARM : An efficient algorithm for close d itemset mining. In Proceedings of the 2nd SIAM International Conference on Data Mining, Arlington, Virginia, USA, pages 34-43, April 2002.

[70] M. J. Zaki, S. Parthasarathy, M. Ogihara, an d W. Li. New algorithms for fast discovery of association rules. In D. Heckerman, H. Mannila, an d D. Pregibon, editors, Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD '97), Newport Beach, California, USA, pages 283290, August 1997.

précédent sommaire








® Memoire Online 2007 - Pour tout problème de consultation ou si vous voulez publier un mémoire: webmaster@memoireonline.com