WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Optimisation de l'énergie réactive dans un réseau d'énergie électrique

( Télécharger le fichier original )
par Brahim GASBAOUI
Université BECHAR - MAGISTER 2008
  

précédent sommaire suivant

3.1.15. Application

La fonction objective considérée dans notre cas est la fonction des pertes actives

totales transmises. Le problème d'optimisation répond aux équations suivantes :

Sous les contraintes :

Avec :

Où :

Nombre de générateurs.

Nombre de transformateurs.

Nombre de noeuds.

Rapport de transformation des transformateurs.

: Puissances active et réactive générées dans le noeud i.

: Puissances active et réactive de charge dans le noeud i.

Angles des tensions aux noeuds i et j.

Sus ceptance entre les noeuds i et j.

Conductance entre les noeuds i et j.

Dans notre étude, nous sommes intéressés à l'étude de trois variantes. Les deux

premières concernent un seul type de variables de contrôle. Il s'agit de

et de , alors que la troisième consiste à tenir compte des deux types de variables

de contrôle, c'est à dire, . Dans les trois cas les variables d'état sont :

3.1.16. Variante 1 : ( )

En appliquant l'expression (6.6), en forme matricielle, on obtient :

Les conditions d'optimisations, selon les expressions (3.2 0), (3.2 1), (3.2 2) sont :

Et :

Et :

De l'équation (3.3 6), on obtient les valeurs du vecteur des Ces derniers sont

remplacés dans l'équation (3.37), pour déterminer le vecteur Gradient des :

Commençons par le vecteur , on obtient les différentes nouvelles valeurs des

puissances réactives aux noeuds de génération par :

précédent sommaire suivant







9Impact, le film from Onalukusu Luambo on Vimeo.



Appel aux couturier(e)s volontaires

Hack the pandemiuc !

Moins de 5 interactions sociales par jour



BOSKELYWOOD from Ona Luambo on Vimeo.