Rechercher sur le site:
 
Web Memoire Online
Consulter les autres mémoires    Publier un mémoire    Une page au hasard

Interaction of quinolines and artemisinin based antimalarials drugs with ferriprotoporphyrin IX


par Bienvenu MAVAKALA KIAZOLUA
Tsinghua University
Traductions: Original: fr Source:

précédent sommaire suivant

Acknowledgements

I am very grateful to Prof. Dr Yu Zhi Wu for the supervision of this research. His helpful suggestions, comments, and scientific instructions were very benefit for the planning and the conduct of this study.

I would like to thank professors Xing Zhi, Yang Cheng Dui, Li and Guo An of Tsinghua Analysis Center for their wonderful cooperation.

I thank also Prof. Dr Yav Gushimana, Dr Mpiana and Nlandu of Kinshasa Univerity for their fruitful collaboration.

I am thankful for our group meeting members four their friendly assistance in my working and living.

I acknowledge all the Chemistry Department members and the foreign students office for their hospitality.

I wish to express acknowledge to the Chinese Scholarship Council for the financial support of this research.

I am pleased to thank my wife Agnes Tshombo K. and my daughter Ketsia Mavakala for their love and affection and to them, I dedicate this work.

Glory, honor and majesty forever to the only wise God through Jesus Christ.

References and notes

[ 1] Acton N, Klayman D L, Rollman I J. Reductive electrochemical HPLC assay for artemisinin (qinghaosu). Planta Med., 1985, 51: 445~446.

[2] Adams P A, Berman P A, Egan T J et al. The iron environment in heme and heme-antimalarial complexes of pharmacological interest. J. Inorg. Biochem., 1996, 63: 69~77.

[3] Basilico N, Monti D, Olliaro P, Taramelli D. Non iron porphyrins inhibit -haematin (malaria pigment) polymerization. FEBS Lett., 1997, 409: 297~299.

[4] Berman, P A., Adams P A. Artemisinin enhances Heme-catalyse oxidation of lipid membranes. Free Radical Bio. Med., 1997, 22: 1283~1288.

[5] Bray P G et al. Access to hematin: the basis of chloroquine resistance. Mol. Pharmacol., 1998, 54:170~179.

[6] Cazelles J, Robert A, Meunier B. Alkylation of heme by artemisinin, an antimalarial drug, C.R. Acad.Sci.Paris, 2001, 4: 85~89.

[7] Chen Y, Zhu S M, Chen H Y. Study on the Electrical Behaviors of Artemisinin ( qinghaosu) and its Derivates II: Reduction Mechanism of Artemisinin in the presence of Hemin. J. Peking Univ. (Acta Sci. Nat.) 2001, 37: 255~259.

[8] China Cooperative Research Group on Qinghaosu and its derivatives as antimalarials. J. Trad. Chin. Med., 1982, 2: 3.

[9] Choi C, Schneider E L, Kim J M et al. Interference with heme binding to histidine-rich protein-2 as an antimalarial strategy. Chem. Biol., 2002, 9: 881~889.

[10] Chou A C, Chevli R, Fitch C D Ferriprotoporphyrin IX, fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochem. 1980, 19:1543~1549.

[11] Constantinidis I, Satterlee J D. UV-Visible and carbon NMR studies of chloroquine binding to urohemin I chloride and uroporphyrin I in aqueous solution. J. Am. Chem. Soc., 1988, 110: 4391~4395.

[12] Cointeaux L, Berrien J F, Peyrou V et al. Synthesis and antimalarial activity of 2-methoxyprop-2-yl peroxides derivatives. Bioorganic & Medicinal Chemistry Letters, 2003, 13: 75~77.

[13] Dechy-Cabaret O, Benoit-Vical F, Robert A et al. Preparation and antimalarial activity of trioxaquine, new modular molecules with trioxanes skeleton linked to a 4-aminoquinoline, Chem. Bio. Chem., 2000, 1: 281~283.

[14] Dechy-Cabaret O, Robert A, Meunier B. Synthesis and stereochemical study of a trioxaquine prepared from cis-bicyclo[3.3.0]octane-3,7-dione. C. R. Chimie, 2002, 5: 297~302.

[15] Dechy-Cabaret O, Benoit-Vical F, Robert A et al. Synthesis and biological evaluation of a new trioxaquine containing a trioxane moiety obtained by halogenocyclisation of a hemiperoxyacetal. C. R. Chimie, 2003, 6:153~160.

[16] Dorn A, Stoffel H, Matile H et al. Malaria haemzoin/-haematin supports haem polymerization in the absence of protein. Nature, 1995, 374: 269~271.

[17] Dhingra V K, Rao V and Narasu M L, Current status of artemsinin and its derivates as antimalarial drugs. Life Sciences, 2000, 66: 279~300.

[18] Dorn A, Vippagunta S R, Matile H et al. Comparison and analysis of several ways to promote heamatin (haem) polymerization and an assessment of its initiation in vitro, Biochem. Pharmacol., 1998, 55: 737~747.

[19] Dzekunov S M et al. Digestive vacuolar pH of intact intra erythrocytic P. falciparum either sensitive or resistant to chloroquine. Mol. Biochem. Parasitol., 2000, 110: 107~124.

[20] Egan T J, Hempelmann E, Mavuso W W. Characterization of synthetic -haematin and effects of the antimalarial drugs quinidine, halofantrine, desbutylhalofantrine and mefloquine. J. Inorg. Biochem., 1999, 73: 101-107.

[21] Egan T J, Marques H M. The role of haem in the activity of chloroquine and related antimalarial drugs. Coordination Chemistry Reviews, 1999,190: 493~517.

[22] Egan T J, Ross D C, Adams P A. Quinoline antimalarial drugs inhibit spontaneous formation of beta-hematin (Malaria pigment). FEBS Lett., 1994, 352: 54~57.

[23] Egan T J, Ross D C, Adams P A. The mechanism of action of quinolines and related antimalarials drugs. S. Afr. J. Sci., 1996, 92: 11~14.

[24] Egan T J, Hunter R., Kaschula C H et al. Structure-Function relationships in aminoquinolines: effects of amino and chloro groups on quinoline-hematin complex formation, inhibition of beta-hematin formation and, antiplasmodial activity. J. Med. Chem., 2000, 43: 283~291.

[25] Egan T J, Mavuso W W, Ross D C et al. Thermodynamic Factors Controlling the Interaction of Quinoline Antimalarial Drugs with Ferriprotoporphyrin IX, J. Inorg. Biochem., 1997, 68: 137~145.

[26] Egan T J. Discovering Antimalarials: a New Strategy. Chemistry and biology, 2002, 9: 852~853.

[27] Eggleson K K, Duffin K L, Goldberg D E. Identification and characterization of falcilysin, a metallopeptidase invovled in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J. Biol. Chem., 1999, 274: 32411~32417.

[28] Enserink M. Ecologists See Flaws in Transgenic Mosquito. Science, 2002, 297: 30~31.

[29] Flaminia C H, Godfray C J, Crisanti A. Impact of Genetic Manipulation on the Fitness of Anopheles stephensi Mosquitoes. Science, 2003, 299: 1225~1227.

[30] Feustel, D. MS Thesis, Koln University, Koln, 1984.

[31] Fitch C D, Chou A C. Heat-labile and heat-stimulable heme polymerase activities in Plasmodium berghei. Mol. Biochem. Parasitol., 1996, 82: 261

[32] Fidock D A et al. Mutations in the P.falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell, 2000, 6: 861~871.

[33] Foley, M. and Tilley, L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79: 55-87.

[34] Francis S E et al. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol.,1997, 51: 97~123.

[35] Fulzele D P, Sipahimalani A T, Heble M R. Tissue cultures of Artemisia annua: organogenesis and artemisinin production. Phytother. Res., 1991, 5:149~153.

[36] Geary T G et al. Uptake of [3H] chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum. Biochem. Pharmacol.,1986, 35: 3805~3812.

[37] Gong D H, Li J F, Yuan C Y New and Facile Synthesis of 6-Methyl-2-trifluoromethy1-4- (O, O-dialkyl)phosphoryl-quinoline Chin. J. Chem. 2001, 19:1263.

[38] Gushimana Y, Doepner B, Martinez-H E et al. Kinetics of quinine-deuterohemin binding. Biophys. Chem., 1993, 47: 153~162.

[39] Gushimana Z Y, Mpiana P T, Tshilanda D D. Etude de la complexation de la ferriprotoporphyrine IX avec la quinine et la chloroquine dans le melange eau-ehyleneglycol 50%. Ann. Fac. Sci. Kinshasa, 1996, 2: 145~154.

[40] Green M D, Mount D L, Wirtz R A, White N J. A colorimetric field method to assess the authenticity of drugs sold as the antimalarial artesunate. J. Pharm. Biomed. An., 2000, 24: 65~70.

[41] Haley T J, Berndt W O. Handbook of Toxicology, Harper & Row Pub., New-York, 1987.

[42] Hawley S R., Bray P G, Mungthin M et al., Relationship between antimalarial drug activity, accumulation, and inhibition of heme polymerization in plasmodium falciparum in vitro. Antimicrob. Agents Chemother., 1998, 42: 682~686.

[43] Haynes R K, Pai H H O, Voerste A. Ring opening of artemisinin (qinghaosu) and dihydroartemisinin and interception of the open hydroperoxides with formation of N-oxides -a chemical model for antimalarial mode of action. Tetrahedron Lett., 1999, 40: 15~18.

[44] Hien T T, White N J, Qinghaosu. Lancet, 1993, 34: 603~608.

[45] Hoffman S L. Artemether in severe malarias still too many deaths. New Engl. J. Med. 1996, 335: 124~126.

[46] Hofneiz W, Burgin H, Gocke E et al. Ro 42-1611(arteflene), a new effective antimalarial:chemical:structure and biological activity. Trop. Med. Parasitol., 1994, 45: 261~265.

[47] Homewood C A et al. Lysosomes, pH and the anti-malarial action of chloroquine, Nature, 1972, 233: 50~52.

[48] Hyde J E. Mechanism of resistance of plasmodium falciparum to antimalarials drugs. Microbes and infections, 2002, 4: 165~174.

[49] Jefford C W, Favarger F, Vicente M., Jacquier Y. The decomposition of cis-fused cyclopenteno-1, 2, 4-trioxanes induced by ferrous salts and some oxophilic reagents. Helv. Chim. Acta, 1995, 78: 4521~458.

[50] Jiang H L, Chen K X, Tang Y et al. Quantum chemical studies on antimalarial of artemisinin (qinghaosu) derivatives. Chin. J. Chem., 1995, 13: 131.

[51] Kamchonwongpaison S, Chandrangam G, Avery M A et al. Resistance to artemisinin of malaria parasites (plasmodium falciparum infetcing -thalasemic erythrocytes in vitro.Competition in drug accumulation with uninfected erythrocytes. J. Clin. Invest., 1994, 93: 467~473.

[52] Kamchonwongpaisan S, Meshnick S R, the mode of action the antimalarial artemisinin and its derivates. Gen. Pharmac., 1996, 27: 587~592

[53] Kannan R., Dinkar S, Chauhan V S Heme -artemsinin Adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization. Chemistry and Biology, 2002, 9: 321~332

[54] Kaschula C H, Egan T J, Hunter R. et al. J. Med. Chem.2002, 45, 3531~3539

[55] Klayman, D. L. Qinghaosu (artemismin): An antimalarial drug from China. Science, 1985, 228: 1049~1055

[56] Krogstad, D. J.; Schlesinger, P. H.; Gluzman, I. Y. Antimalarials increase vesicle pH in plasmodium falciparum, J. Cell Biol. 1985, 101: 2302.

[57] Kuhn, S. Ph.D. Dissertation, Koln University, Koln, 1995.

[58] Lian Z, Zhou W S, Xu X.X A new sesquiterpene peroxide (yingzhaosu D) and sesquiterpenol (yingzhaosu) from Artabotrys uncinatus (L.) Merr. J. Chem. Soc. Chem. Comm., 1988: 523~524.

[59] Macreadie I G, Hagai G, Worachart S et al. Antimalarial drug development and new drug targets. Parasitology Today, 2000, 16: 438~444.

[59] Marques H M, Voster K, Egan T J. The Interaction of the Heme-Octapeptide, N-Acetylmicroperoxidase-8 with Antimalarial Drugs: Solution Studies and Modeling by Molecular Mechanics Methods. J. Inorg. Biochem., 1996, 64: 7~23.

[60] Marcus Y. The properties of solvents, John Wiley & Sons, Inc; Vol.4, New York, 1999.

[62] Mavakala B K and Gushimana Z Y, Contribution a l'etude de la denaturation de la methemoglobin: influence de la force ionique, memoire, Kinshasa University, 1991.

[63] Meshnick S R. Artemisinin: mechanisms of action, resistance and toxicity, International Journal for Parasitology, 2002, 32: 165~1960.

[64] Meshnick S R, Yang Y Z, Lima V et al. Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob. Agents Chemother., 1993, 37: 1108~1114.

[65] Meshnick S R, Jefford C W, Posner G H et al. Second generation antimalarial endoperoxides. Parasitology Today, 1996, 12: 79~82.

[66] Meshnick S R., Thomas A., Ranz A et al. Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol.Biochem. Parasitol., 1991, 49: 181~189.

[67] Monti D. et al. Does chloroquine really act through oxidative stress? FEBS. Lett. 2002, 522: 3~5.

[68] Moreau S, Perly B, Chachaty C et al A nuclear magnetic resonance study of the interactions of antimalrial drugs in with porphyrins. Biochem.Biophys.Acta, 1985, 840: 107~116. 

[69] Moreau S, Perly B, Biguet B. Interactions de la chloroquine avec la ferriprotoporphyrine IX. Biochimie, 1982, 64:1015~1020.

[70] Niessen WM A, Liquid Chromatography-Mass Spectrometry, 2d Ed., Vol. 79, Marcel Dekker, Inc, New York, 1999.

[71] Pagola S, Stephens P W, Bohle D S et al. The structure of malaria beta-haematin. Nature, 2000, 404: 307~310.

[72] Pandey A V, Singh N, Tekwani B L et al. Assay of ß-hematin formation by malaria parasite. J. Pharm. Biomed. Anal., 1999, 20: 203~207.

[73] Pandey A V, Tekwani B L, Singh R L et al. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J. Biol. Chem, 1999, 274, 19383~19388.

[74] Pandey A V, Bisht H, Babbarwal V K et al. Biochem. J., 2001, 355: 333~338.

[75] Pras N, Visser J F, Batterman S et al Laboratory selection of Artemisia annua L. for high artemisinin yielding types. Phytochem. Anal., 1991, 2: 80~83

[76] Pennisi E., Closing In on a Deadly Parasite's Genome. Science, 2000, 290:439.

[77] Posner G H, Wang D, Cumming J N et al. Further evidence supporting the importance of and the restrictions on a carbon-centered radical for high antimalarial activity of 1,2,4-trioxanes like artemisinin. J. Med. Chem., 1995, 38: 2273~2275.

[78] Sherman I W, Metabolism, In: W.H.G. Richards (Eds.), Antimalarial Drugs I, Springer, Berlin, 1984, p.31.

[79] Singh N P and Lai H Selective toxicity of hydroartemsinin and holotransferrin toward human breast caner cells. Life Sciences, 2001, 70: 49~56.

[80] Shukla K L, Gund T M, Meshnick S R. Molecular modeling studies of the artemisinin (qinghaosu)-hemin interaction: docking between the antimalarial agent and its putative receptor. J. Mol.Graph., 1996, 13: 215~222.

[81] Skoog D A, Holler FJ, Nieman T A, Principles of instrumental analysis, 5th ed., Harcourt Brace College Publishers, London, 1998.

[82] Slater A F G, Chloroquine: Mechanism of drug action and resistance in plasmodium falciparum,. Pharmacol. Ther., 1993, 57: 203~235.

[83] Slater A F G, Cerami A., Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites, Nature 1992, 355: 167~169.

[84] Spiller D G, Bray P G, Hughes R H et al. The pH of the Plasmodium falciparum digestive vacuole: holy grail or dead-end trail? Trends Parasitol., 2002, 18: 441~444.

[85] Taubes G. Searching for a Parasite's Weak Spot, Science, 2000, 290: 434~437.

[86] Taranto A G, Carneiro J W M., Oliveira F G et al. The role of C-centered radicals on the mechanism of action of artemisinin. Journal of molecular structure (theochem), 2002, 580: 207~215.

[87] Taranto A G, Carneiro J W M, Oliveira F G, MND/d calculations on the interaction between artemisinin and heme, ournal of molecular structure (theochem) 2001, 539: 267~272.

[88] Tonmumphean S, Parasuk V. Automated calculation of docking of artemisinin to heme. J. Mol. Model., 2001, 7: 26~33.

[89] Trigg P I, Kondrachine A V. In Malaria. Parasite biology, pathogenesis and protection; Sherman, I.W., Ed; ASM Press, Washington DC, 1998; pp. 11~22

[90] Ribeiro M C D, Augusto O, Ferreira A M D. J. Inorg. Biochem., 1997, 65:15.

[91] Robert A, Meunier B. Characterization of the first covalent adduct between artemisinin and a heme model. J. Am. Chem. Soc., 1997,119: 5968~5969.

[92] Robert A, Meunier B. Characterization of the first covalent adduct between artemisinin and heme model. J. Am. Chem. Soc., 1997, 119: 5968~5969.

[93] Robert A, Boularan M, Meunier B. Interaction of artemisinin (qinghaosu) with the tetraphenylporphyrinato-manganese (II) complex. C. R. Acad. Sci. Paris, serie Iib., 1997, 234: 59~66.

[94] Robert A, Yannick C, Meunier B, NMR characterization of covalent adducts obtained by alkylation of heme with the antimalarial drug artemisinin. Inorganica Chimica Acta, 2002, 339: 488~496

[95] Rodriguez M, Bonnet-Delpon D, Begue J P et al. Alkylation of Manganese (II) Tetraphenylporphyrin by Antimalarial Fluorinated Artemisinin Derivatives, Bioorg. Med. Chem. Lett., 2003, 13, 1059~1062.

[96] Rosenthal P J, Sijwali P S, Singh A et al. Curr. Pharm. Des, 2002, 8, 1659~1672.

[97] Rosenthal P J. Proteases of protozoan parasites. Adv.Parasitol., 1999, 43:105~159.

[98] Voet D, Voet J G. Biochemistry, 2nd Ed; John Wiley & Sons, Inc.: New York, 1995 pp.124~125.

[99] Weatherall D J, Common genetic disorders of the red cell and <<malaria hypothsis>>, Ann. Trop.Med.Parasitol, 1987, 81: 539~548.

[100] Wernsdorfer, W.H., McGregor, I., Malaria: Principles and Practice of Malariology, Eds; Churchill-Livingstone: Edinburgh, 1988.

[101] World Health Organization, The World Health Report, Geneva, 2002

[102] Wyler D J. Malaria-resurgence, resistance and research. New Engl. J. Med., 1983, 30: 875~878.

[103] Yang C Z, Shi M, Chen H Y et al. Artesunate interaction with hemin. Bioelectrochem. and Bioenergetics ,1998, 44: 295~300 .

[104] Yang Y Z., Little B, Meshnick S R. Alkylation of proteins by artemisinin. Effects of heme, pH, and drug structure. Biochem. Pharmacol.,1994, 48: 569~573.

[105] Yayon A. et al. Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc. Natl. Acad. Sci. U. S. A. 1985, 82:2784~2788.

[106] Yu Z W, Quinn P J. Dimethyl sulfoxide: A review of its applications in cell bilogy. Bioscience Reports, 1994, 4: 259~281.

[107] Yuthavong Y and Wilairat P. Protection against malaria by thalassemia and hemoglobin variants. Parasitology Today, 1994, 9: 241~245.

[108] Zhang Y, Gosser D K, Meshnick S R. Hemin-catalysed decomposition of artemisinin. Biochem, 1992, 43: 1805 ~1809.

[109] Zollinger H, Color Chemistry: synthesis, Properties and Aplications of Organic Dyes and Pigments, VCH, New york,  1991, p. 119.

précédant sommaire suivant








® Memoire Online 2007 - Pour tout problème de consultation ou si vous voulez publier un mémoire: webmaster@memoireonline.com