WOW !! MUCH LOVE ! SO WORLD PEACE !
Fond bitcoin pour l'amélioration du site: 1memzGeKS7CB3ECNkzSn2qHwxU6NZoJ8o
  Dogecoin (tips/pourboires): DCLoo9Dd4qECqpMLurdgGnaoqbftj16Nvp


Home | Publier un mémoire | Une page au hasard

 > 

Analyse statistique de demandes et d'offres d'emploi enregistrées par un service de l'état. Cas de l'Office National de l'Emploi / direction provinciale du Nord-Kivu en RDC de 2007 à  2009

( Télécharger le fichier original )
par Augustin MUNYARUYENZI NIKUZE
Institut supérieur de statistique et de nouvelles technologies de Goma (ISSNT-Goma) - Graduat en statistique 2009
  

précédent sommaire suivant

Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

II.2. MODELE DE REGRESSION SIMPLE

La technique de régression consiste à prédire la valeur d'une variable lorsque l'autre est connue.

La régression est un outil statistique où l'on tente de prédire la valeur d'une variable (variable indépendante) en fonction de l'autre variable ou des autres variables (variable(s) dépendante(s)).

S'il existe une liaison linéaire significative entre 2 variables X et Y, on peut ajuster l'une d'elles par l'autre au moyen d'une droite appelée droite d'estimation de Y en X.

Etant donné une série de couples se propose de choisir 2 nombres a et b en sorte que la fonction Y=ax+b représente le mieux possible les couples des données. C'est ce qu'on appelle effectuer un ajustement linéaire.

La meilleure droite d'ajustement linéaire est donnée par la méthode des moindres carrés. Celle-ci permet de minimiser la somme des carrés des erreurs :

Les coefficients angulaires ou coefficients directeurs des droites de régression sont dits coefficients de régression.

La droite d'ajustement de moindres carrés est Y=ax + b.

II.2.1. Intervalle de confiance des coefficients de la droite de régression

Nous nous proposons de construire des intervalles de confiance pour les paramètres inconnus a et b du modèle de régression linéaire.

Soit est l'estimateur du paramètre a

est l'estimateur du paramètre b

= =

=

Avec et

On montre que les variances de ces estimateurs sont :

V()=

V(= avec

Remarques

1. la variance des estimateurs et dépend du paramètre inconnu . Ainsi, pour estimer les variances, il sera nécessaire d'avoir une estimation de .

2. la précision des estimateurs sera d'autant meilleure que la dispersion des valeurs X1....Xn est grande.

Les estimateurs des écarts types de et sont :

S et S

Avec

= données obtenues en remplaçant les dans la droite.

Ainsi, au degré de confiance 1-?, les intervalles de confiance pour les coefficients a et b sont respectivement :

et

est lue dans la table de Student à n-2 degré de liberté.

II.2.2. Test de signification des coefficient de la droite de la régression

Plus les points représentatifs des observations sont proches de la droite de régression, c'est-à-dire les résidus sont faibles. Le plus important est la variabilité de y expliquée par l'équation de régression estimée. La variabilité totale de y est donc égale à la somme de la variabilité expliquée et la variabilité résiduelle.28(*)

· Pour le coefficient a

Il est question de tester les hypothèses :

H0 : a=0, c'est-à-dire il n'y a pas une dépendance linéaire entre Y et X Contre

H1 : a0, c'est-à-dire il y a une dépendance linéaire entre Y et X.

Règle de décision

On rejette H0 au seuil si

, donc si

· Pour le coefficient b

Testons les hypothèses :

H0 : b=0, c'est-à-dire la droite passe par l'origine

Contre

H1 : b0, c'est-à-dire la droite ne passe pas par l'origine.

Règle de décision

On rejette H0 au seuil si

Ou encore si

* 28 POLO FUETA E., Cours d'économétrie, G3 statistique, Inédit, 2009-2010.

précédent sommaire suivant











Bitcoin is a swarm of cyber hornets serving the goddess of wisdom, feeding on the fire of truth, exponentially growing ever smarter, faster, and stronger behind a wall of encrypted energy

9Impact, le film from Onalukusu Luambo on Vimeo.